[1] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[2] OPENAI. GPT-4 technical report[J]. arXiv:2303.08774, 2023.
[3] OPENAI. Introducing ChatGPT [EB/OL].(2022-11-30)[2024-04-17]. https: //openai.com/blog/chatgpt.
[4] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]//Advances in Neural Information Processing Systems, 2022: 27730-27744.
[5] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J].arXiv: 2302.13971,2023.
[6] TAORI R, GULRAJANI I, ZHANG T, et al. Stanford Alpaca: an instruction-following LLaMA model [EB/OL]. (2023-03-13)[2024-04-13]. https://crfm.stanford.edu/2023/03/13/alpaca.html.
[7] JIN B, ZENG H, WANG G, et al. Language models as semantic indexers[C]//Proceedings of the 42nd International Conference on Machine Learning, 2024: 1-16.
[8] 车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023,53 (9): 1645-1687.
CHE W X, DOU Z C, FENG Y S, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: challenges, opportunities and future directions[J]. SCIENTIA SINICA Informationis, 2023, 53(9): 1645-1687.
[9] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17 (10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J].Journal of Frontiers of Computer Science & Technology, 2023, 17(10): 2377-2388.
[10] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Advances in Neural Information Processing Systems, 2020: 9459-9474.
[11] MAO Y, HE P, LIU X, et al. Generation-augmented retrieval for open-domain question answering[J]. arXiv:2009.08553, 2020.
[12] GUU K, LEE K, TUNG Z, et al. Retrieval augmented language model pre-training[C]//Proceedings of the International Conference on Machine Learning, 2020: 3929-3938.
[13] JIANG Z, XU F F, GAO L, et al.Active retrieval augmented generation[J]. arXiv: 2305.06983, 2023.
[14] ZHAO P, ZHANG H, YU Q, et al. Retrieval-augmented generation for AI-generated content: a survey[J]. arXiv:2402.
19473, 2024.
[15] CHEN J, LIN H, HAN X, et al. Benchmarking large language models in retrieval-augmented generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 17754-17762.
[16] UPTRAIN. AI Uptrain[EB/OL].(2021-01-01)[2023-12-09]. https://demo.uptrain.ai/benchmark.
[17] XIAO S, LIU Z, ZHANG P, et al. C-pack: packaged resources to advance general Chinese embedding[J]. arXiv:2309.07597, 2023.
[18] XIAO S, LIU Z, SHAO Y, et al. RetroMAE: pre-training retrieval-oriented language models via masked auto-encoder[J]. arXiv: 2205.12035, 2022.
[19] YANG A, XIAO B, WANG B, et al. Baichuan 2: open large-scale language models[J]. arXiv:2309.10305, 2023.
[20] Cohere. Cohere embeddings[EB/OL]. (2023-01-01)[2024-05-13]. https://cohere.com.
[21] Mistral AI. Mistral AI embeddings[EB/OL].(2023-09-27) [2024-03-13]. https://mistral.ai/news/announcing-mistral-7b.
[22] NEELAKANTAN A, XU T, PURI R, et al. Text and code embeddings by contrastive pre-training[J]. arXiv:2201.10005, 2022.
[23] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[24] DU Z, QIAN Y, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022: 320-335.
[25] ZENG A, LIU X, DU Z, et al. Glm-130b: an open bilingual pre-trained model[J]. arXiv: 2210.02414, 2022.
[26] DEFOG INC. SQLCoder[EB/OL].(2023-09-27)[2024-01-01]. https://defog.ai/sqlcoder-demo.
[27] CHEN J, XIAO S, ZHANG P, et al. M3-embedding: multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge distillation[C]//Findings of the Association for Computational Linguistics, 2024: 2318-2335. |