[1] 陈辉, 王硕, 许家昌, 等. 基于多尺度特征融合生成对抗网络的水下图像增强[J]. 计算机工程与应用, 2023, 59(21): 231-241.
CHEN H, WANG S, XU J C, et al. Underwater image enhancement based on generate adversarial network with multiscale feature fusion[J]. Computer Engineering and Applications, 2023, 59(21): 231-241.
[2] 常戬, 陈洪福, 王冰冰. Transformer与CNN并行引导的水下图像增强[J]. 计算机工程与应用, 2024, 60(4): 280-288.
CHANG J, CHEN H F, WANG B B. Underwater image enhancement based on parallel guidance of Transformer and CNN[J]. Computer Engineering and Applications, 2024, 60(4): 280-288.
[3] 常戬, 韩旭. 结合导向滤波与自适应算子的水下图像增强[J]. 计算机工程与应用, 2023, 59(4): 216-223.
CHANG J, HAN X. Underwater image enhancement combining guide filtering with adaptive operator[J]. Computer Engineering and Applications, 2023, 59(4): 216-223.
[4] 晋玮佩, 郭继昌, 祁清. 基于条件生成对抗网络的水下图像增强[J]. 激光与光电子学进展, 2020, 57(14): 33-44.
JIN W P, GUO J C, QI Q. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 33-44.
[5] LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389.
[6] GUO Y, LI H, ZHUANG P. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2019, 45(3): 862-870.
[7] CHEN X, YU J, KONG S, et al. Towards real-time advancement of underwater visual quality with GAN[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9350-9359.
[8] YE X, XU H, JI X, et al. Underwater image enhancement using stacked generative adversarial networks[C]//Advances in Multimedia Information Processing, 2018: 514-524.
[9] DU R, LI W, CHEN S, et al. Unpaired underwater image enhancement based on cyclegan[J]. Information, 2021, 13(1): 1.
[10] FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018: 7159-7165.
[11] WANG N, ZHOU Y B, HAN F L, et al. UWGAN: underwater GAN for realworld underwater color restoration and dehazing[J]. arXiv:1912.10269, 2019.
[12] LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multicolor space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000.
[13] LIU X, GAO Z, CHEN B M. MLFcGAN: multilevel feature fusion-based conditional GAN for underwater image color correction[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1488-1492.
[14] ZHOU W, JIN J, LEI J, et al. CIMFNet: cross-layer interaction and multiscale fusion network for semantic segmentation of high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(4): 666-676.
[15] 胡振宇, 陈琦, 朱大奇. 基于颜色平衡和多尺度融合的水下图像增强[J]. 光学精密工程, 2022, 30(17): 2133-2146.
HU Z Y, CHEN Q, ZHU D Q. Underwater image enhancement based on color balance and multi-scale fusion[J]. Optics and Precision Engineering, 2022, 30(17): 2133-2146.
[16] JIA F, MA L, YANG Y, et al. Pixel-attention CNN with color correlation loss for color image denoising[J]. IEEE Signal Processing Letters, 2021, 28: 1600-1604.
[17] 彭土有, 吴洁, 彭俊. 拉普拉斯边缘检测算法的改进及其在探地雷达中的应用[J]. 现代雷达, 2020, 42(8): 41-45.
PENG T Y, WU J, PENG J. Improvement of laplace edge detection algorithm and its application on GPR[J]. Modern Radar, 2020, 42(8): 41-45.
[18] CHOI Y, PARK H. Improving ESRGAN with an additional image quality loss[J]. Multimedia Tools and Applications, 2023, 82(2): 3123-3137.
[19] FU Z, FU X, HUANG Y, et al. Twice mixing: a rank learning based quality assessment approach for underwater image enhancement[J]. Signal Processing: Image Communication, 2022, 102: 116622.
[20] LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389.
[21] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[22] HUMMEL R. Image enhancement by histogram transfo-rmation[J]. Computer Graphics and Image Processing, 1977, 6(2): 184-195.
[23] ZUIDERVELD K. Contrast limited adaptive histogram equalization[J]. Graphics Gemss, 1994: 474-485.
[24] CHEN Y W, PEI S C. Domain adaptation for underwater image enhancement via content and style separation[J]. IEEE Access, 2022, 10: 90523-90534.
[25] ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234.
[26] SALEH A, SHEAVES M, JERRY D, et al. Adaptive uncert-ainty distribution in deep learning for unsupervised underwater image enhancement[J]. arXiv:2212.08983, 2022.
[27] LIU S, FAN H, LIN S, et al. Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 5326-5333. |