[1] WANG Z G, ZHAN J, DUAN C G, et al. A review of vehicle detection techniques for intelligent vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 3811-3831.
[2] HOU X Y, WANG Y, CHAU L P. Vehicle tracking using deep SORT with low confidence track filtering[C]//Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2019: 1-6.
[3] 李华. 基于人工智能的非现场执法场景下闯红灯违法行为检测[D]. 杭州: 杭州电子科技大学, 2022.
LI H. Detection of illegal behavior of running red light in off-site law enforcement scene based on artificial intelli-gence[D]. Hangzhou: Hangzhou Dianzi University, 2022.
[4] 宁交轩, 王茸. 道路交通事故死亡人数三连降[N]. 南京日报, 2023-06-28(A08).
NING J X, WANG R. Three consecutive declines in road traffic accident fatality numbers[N]. Nanjing Daily, 2023-06-28(A08).
[5] CAO X B, WU C X, YAN P K, et al. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 2421-2424.
[6] 张亮修. 基于Haar-like特征的实时道路车辆识别方法研究[D]. 青岛: 青岛大学, 2009.
ZHANG L X. Research on real-time road vehicle recognition method based on Haar-like feature[D]. Qingdao: Qingdao University, 2009.
[7] 李双. 基于Harris-SIFT和归一化割算法的车辆检测与识别[D]. 哈尔滨: 哈尔滨工程大学, 2012.
LI S. Vehicle detection and recognition based on Harris-SIFT and normalized cut algorithm[D]. Harbin: Harbin Engineering University, 2012.
[8] YU G H, YU P F, LI H Y, et al. An improved faster R-CNN method for car front detection[C]//Proceedings of the 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference. Piscataway: IEEE, 2022: 7-12.
[9] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[11] LIU X M, FENG J, CHEN P. Vehicle detection in traffic monitoring scenes based on improved YOLOV5s[C]//Proceedings of the 2022 International Conference on Computer Engineering and Artificial Intelligence. Piscataway: IEEE, 2022: 467-471.
[12] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[14] 文奴, 郭仁忠, 贺彪. 基于DCN-Mobile-YOLO模型的多车道车辆计数[J]. 深圳大学学报(理工版), 2021, 38(6): 628-635.
WEN N, GUO R Z, HE B. Multi-lane vehicle counting based on DCN-Mobile-YOLO model[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(6): 628-635.
[15] PORIKLI F. Detection of temporarily static regions by processing video at different frame rates[C]//Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2007: 236-241.
[16] 石时需, 郑启伦, 黄翰, 等. 基于粒子滤波算法的高速公路车辆停车检测[J]. 计算机工程与应用, 2008, 44(34): 239-242.
SHI S X, ZHENG Q L, HUANG H, et al. Vehicle breaking detection on express way based on particle filter algorithm[J]. Computer Engineering and Applications, 2008, 44(34): 239-242.
[17] 丁冰, 杨祖莨, 丁洁, 等. 基于改进YOLOv3的高速公路隧道内停车检测方法[J]. 计算机工程与应用, 2021, 57(23): 234-239.
DING B, YANG Z L, DING J, et al. Detection method of highway tunnel vehicle stopping based on improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(23): 234-239.
[18] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 3645-3649.
[19] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[20] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[21] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[22] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[23] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[24] WANG C Y, YEH I H, LIAO H. You only learn one representation: unified network for multiple tasks[J]. Journal of Information Science and Engineering, 2021, 39: 691-709.
[25] WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
[26] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv: 1804. 02767, 2018.
[27] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[29] WANG Q, WU B, ZHU P, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. |