[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] ZHANG S, XU H, ZHANG L, et al. Cervical cancer: epidemiology, risk factors and screening[J]. Chinese Journal of Cancer Research, 2020, 32(6): 720-728.
[3] 董娜, 赵丽, 常建芳, 等. 宫颈细胞图像的特征选择与分类识别算法研究[J]. 湖南大学学报 (自然科学版), 2019, 46(12): 1-8.
DONG N, ZHAO L, CHANG J F, et al. Research on feature selection and classification recognition algorithm of cervical cell image[J]. Journal of Hunan University (Natural Sciences), 2019, 46(12): 1-8.
[4] 赵理莉, 孙燎原, 殷建平, 等. 结合层次法与主成分分析特征变换的宫颈细胞识别[J]. 国防科技大学学报, 2017, 39(6): 45-50.
ZHAO L L, SUN L Y, YIN J P, et al. Cervical cell recognition based on hierarchical method and principal component analysis feature transformation[J]. Journal of National University of Defense Technology, 2017, 39(6): 45-50.
[5] MARIARPUTHAM E J, STEPHEN A. Nominated texture based cervical cancer classification[J]. Computational and Mathematical Methods in Medicine, 2015(2): 586928.
[6] 杨培伟, 周余红, 邢岗, 等. 卷积神经网络在生物医学图像上的应用进展[J]. 计算机工程与应用, 2021, 57(7): 44-58.
YANG P W, ZHOU Y H, XING G, et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 2021, 57(7): 44-58.
[7] 张梦倩, 张莉. 粗-细两阶段卷积神经网络算法[J]. 计算机科学与探索, 2021, 15(8): 1501-1510.
ZHANG M Q, ZHANG L. Coarse-to-fine two-stage convolutional neural network algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1501-1510.
[8] 赵越, 曾立波, 吴琼水. 卷积神经网络的宫颈细胞图像分类[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2049-2054.
ZHAO Y, ZENG L B, WU Q S. Classification of cervical cells based on convolution neural network[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(11): 2049-2054.
[9] PLISSITI M E, DIMIKRAKOPOULOS P, SFIKAS G, et al. SIPAKMED: a new dataset for feature and image based classification of normal and pathological cervical cells in Pap smear images[C]//2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, Oct 7-10, 2018. Piscataway: IEEE, 2018: 3144-3148.
[10] GHONEIM A, MUHAMMAD G, HOSSAIN M S. Cervical cancer classification using convolutional neural networks and extreme learning machines[J]. Future Generation Computer Systems, 2020, 102: 643-649.
[11] SHI J, WANG R, ZHENG Y, et al. Cervical cell classification with graph convolutional network[J]. Computer Methods and Programs in Biomedicine, 2021, 198: 105807.
[12] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149-167.
ZHOU T, LIU Y C, LU H L, et al. ResNet and its application to medical image processing: research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149-167.
[13] GAO S H, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[14] ROY A M, BOSE R, BHADURI J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network[J]. Neural Computing and Applications, 2022, 34(5): 3895-3921.
[15] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, Jun 20-25, 2021. Piscataway: IEEE, 2021: 13713-13722.
[16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[18] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer, 2016: 499-515.
[19] 袁公萍, 汤一平, 韩旺明, 等. 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报(工学版), 2018, 52(4): 694-702.
YUAN G P, TANG Y P, HAN W M, et al. Vehicle category recognition based on deep convolutional neural network[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 694-702.
[20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[21] HUANG G, LIU Z, PLEISS G, et al. Convolutional networks with dense connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8704-8716. |