[1] 吴靖,韩禄欣,沈英,等. 基于改进YOLOv4-tiny的无人机航拍目标检测[J]. 电光与控制, 2022, 29(12):112-117.
WU J, HAN L X, SHEN Y, et al. UAV aerial target detection based on improved YOLOv4-tiny[J]. Electronics Optics & Control, 2022, 29(12): 112-117.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision(ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[7] SAHIN O, OZER S. YOLODrone: improved YOLO architecture for object detection in drone images[C]//Proceedings of the 2021 44th International Conference on Telecommunications and Signal Processing (TSP), 2021: 361-365.
[8] TAN L, LV X, LIAN X, et al. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers & Electrical Engineering, 2021, 93: 107261.
[9] 李成豪,张静,胡莉,等. 基于多尺度感受野融合的小目标检测算法[J]. 计算机工程与应用, 2022, 58(12): 177-182.
LI C H, ZHANG J, HU L, et al. Small object detection algorithm based on multiscale receptive field fusion[J]. Computer Engineering and Applications, 2022, 58(12): 177-182.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[12] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[13] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010. 04159, 2020.
[14] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate detr training by introducing query denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13619-13627.
[15] CHEN Q, CHEN X, WANG J, et al. Group DETR: fast detr training with group-wise one-to-many assignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 6633-6642.
[16] ZHANG H, LI F, LIU S, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[17] ZHAO Y, LV W, XU S, et al. Detrs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 16965-16974.
[18] 曹紫绚,刘刚,张文波,等. 改进回归损失的深度学习单阶段红外飞机检测[J]. 电光与控制, 2023, 30(4): 28-33.
CAO Z X, LIU G, ZHANG W B, et al. Deep learning single-stage infrared aircraft detection based on improved regression loss[J]. Electronics Optics & Control, 2023, 30(4): 28-33.
[19] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[20] XU S, ZHENG S C, XU W, et al. HCF-Net: hierarchical context fusion network for infrared small object detection[J]. arXiv:2403.10778, 2024.
[21] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[22] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[23] ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[24] DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31x31: revisiting large kernel design in CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11963-11975.
[25] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[26] CAI X, LAI Q, WANG Y, et al. Poly kernel inception network for remote sensing detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 27706-27716.
[27] 吕伏,傅宇恒,贺丽娜,等. 三维多层次特征协同的无人机遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(5): 1301-1317.
LYU F, FU Y H, HE L N, et al. UAV remote sensing object detection based on 3D multi-layer feature collaboration[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1301-1317.
[28] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[29] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[30] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[31] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312. 17663, 2023.
[32] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[33] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[34] CHEN Y, ZHANG C, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917. |