[1] XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 472-487.
[2] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696.
[3] CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112.
[4] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[5] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[6] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14420-14430.
[7] LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection[J]. arXiv:2303. 09030, 2023.
[8] SU K, YU D D, XU Z Q, et al. Multi-person pose estimation with enhanced channel-wise and spatial information[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5667-5675.
[9] CHEN Y, SHEN C H, WEI X S, et al. Adversarial PoseNet: a structure-aware convolutional network for human pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1221-1230.
[10] RAFI U, DOERING A, LEIBE B, et al. Self-supervised keypoint correspondences for multi-person pose estimation and tracking in videos[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 36-52.
[11] ZHANG H R, QI Y F, CHEN H L, et al. LSDNet: lightweight stochastic depth network for human pose estimation[J]. The Visual Computer, 2025, 41(1): 257-270.
[12] YANG S, QUAN Z B, NIE M, et al. TransPose: keypoint localization via transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11782-11792.
[13] LI Y J, ZHANG S K, WANG Z C, et al. TokenPose: learning keypoint tokens for human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11293-11302.
[14] 吴程鹏, 谭光兴, 陈海峰, 等. 融合Transformer和注意力的轻量高效人体姿态估计[J]. 计算机工程与应用, 2024, 60(22): 197-208.
WU C P, TAN G X, CHEN H F, et al. Lightweight and efficient human pose estimation fusing Transformer and attention[J]. Computer Engineering and Applications, 2024, 60(22): 197-208.
[15] KIM G, KIM H, KONG K, et al. Human body-aware feature extractor using attachable feature corrector for human pose estimation[J]. IEEE Transactions on Multimedia, 2023, 25: 5789-5799.
[16] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310.
[17] NIE X C, FENG J S, XING J L, et al. Pose partition networks for multi-person pose estimation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 705-720.
[18] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5385-5394.
[19] 江春灵, 曾碧, 姚壮泽, 等. 融合权重自适应损失和注意力的人体姿态估计[J]. 计算机工程与应用, 2023, 59(18): 145-153.
JIANG C L, ZENG B, YAO Z Z, et al. Human pose estimation fusing weight adaptive loss and attention[J]. Computer Engineering and Applications, 2023, 59(18): 145-153.
[20] WANG Y H, LI M Y, CAI H, et al. LitePose: efficient architecture design for 2D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13116-13126.
[21] LUO Z X, WANG Z C, HUANG Y, et al. Rethinking the heatmap regression for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13259-13268.
[22] KOCABAS M, KARAGOZ S, AKBAS E. MultiPoseNet: fast multi-person pose estimation using pose residual network[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 437-453.
[23] MAJI D, NAGORI S, MATHEW M, et al. YOLO-Pose: enhancing YOLO for multi person pose estimation using object keypoint similarity loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 2636-2645.
[24] KE L P, CHANG M C, QI H G, et al. Multi-scale structure-aware network for human pose estimation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 731-746.
[25] CHU X, YANG W, OUYANG W, et al. Multi-context attention for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5669-5678.
[26] LIU W T, CHEN J, LI C, et al. A cascaded inception of inception network with attention modulated feature fusion for human pose estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7170-7177.
[27] SHAN B G, SHI Q X, YANG F. MSRT: multi-scale representation Transformer for regression-based human pose estimation[J]. Pattern Analysis and Applications, 2023, 26(2): 591-603.
[28] HUANG J J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5699-5708.
[29] ZHANG W Q, HUANG Z L, LUO G Z, et al. TopFormer: token pyramid transformer for mobile semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12073-12083.
[30] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[31] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755.
[32] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3686-3693.
[33] CHEN Y P, DAI X Y, LIU M C, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11027-11036.
[34] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNetV2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 122-138.
[35] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 483-499.
[36] LI K, WANG S J, ZHANG X, et al. Pose recognition with cascade transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1944-1953.
[37] 高坤, 李汪根, 束阳, 等. 融入密集连接的多尺度轻量级人体姿态估计[J]. 计算机工程与应用, 2022, 58(24): 196-204.
GAO K, LI W G, SHU Y, et al. Multi-scale lightweight human pose estimation with dense connections[J]. Computer Engineering and Applications, 2022, 58(24): 196-204.
[38] FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2353-2362.
[39] WANG W H, XIE E Z, LI X, et al. Pyramid vision Transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558. |