[1] HEALEY J A, PICARD R W. Detecting stress during real-world driving tasks using physiological sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2): 156-166.
[2] LI W, TAN R, XING Y, et al. A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks[J]. Scientific Data, 2022, 9(1): 481.
[3] RAMANISHKA V, CHEN Y T, MISU T, et al. Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7699-7707.
[4] MARTIN M, ROITBERG A, HAURILET M, et al. Drive & Act: a multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2801-2810.
[5] YANG C, YANG Z Y, LI W Y, et al. FatigueView: a multi-camera video dataset for vision-based drowsiness detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 233-246.
[6] ROTH M, GAVRILA D M. DD-pose-a large-scale driver head pose benchmark[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 927-934.
[7] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4489-4497.
[8] QIU Z F, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3D residual networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5534-5542.
[9] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4724-4733.
[10] WHARTON Z, BEHERA A, LIU Y H, et al. Coarse temporal attention network (CTA-Net) for driver’s activity recognition[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1278-1288.
[11] LIU D C, YAMASAKI T, WANG Y, et al. Toward extremely lightweight distracted driver recognition with distillation-based neural architecture search and knowledge transfer[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 764-777.
[12] GAO C Q, DU Y H, LIU J, et al. InfAR dataset: infrared action recognition at different times[J]. Neurocomputing, 2016, 212: 36-47.
[13] JIANG Z L, ROZGIC V, ADALI S. Learning spatiotemporal features for infrared action recognition with 3D convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 309-317.
[14] VENTURELLI M, BORGHI G, VEZZANI R, et al. From depth data to head pose estimation: a siamese approach[J]. arXiv:1703.03624, 2017.
[15] BORGHI G, FABBRI M, VEZZANI R, et al. Face-from-depth for head pose estimation on depth images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 596-609.
[16] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976.
[17] REN H Z, GUO Y G, BAI Z H, et al. A multi-semantic driver behavior recognition model of autonomous vehicles using confidence fusion mechanism[J]. Actuators, 2021, 10(9): 218.
[18] KONSTANTINOU M, RETSINAS G, MARAGOS P. Enhancing action recognition in vehicle environments with human pose information[C]//Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments. New York: ACM, 2023: 197-205.
[19] TAN D Y, CHEN H S, TIAN W, et al. DiffusionRegPose: enhancing multi-person pose estimation using a diffusion-based end-to-end regression approach[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 2230-2239.
[20] YANG J, ZENG A, LIU S, et al. Explicit box detection unifies end-to-end multi-person pose estimation[J]. arXiv:2302.01593, 2023.
[21] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696.
[22] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5385-5394.
[23] LI Y J, YANG S, LIU P D, et al. SimCC: a simple coordinate classification perspective forHuman pose estimation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 89-106.
[24] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310.
[25] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[26] 高德勇, 陈泰达, 缪兰. 改进YOLOv8n的道路目标检测算法[J]. 计算机工程与应用, 2024, 60(16): 186-197.
GAO D Y, CHEN T D, MIAO L. Improved road object detection algorithm for YOLOv8n[J]. Computer Engineering and Applications, 2024, 60(16): 186-197.
[27] 吴兆东, 徐成, 刘宏哲, 等. 适用于鱼眼图像的改进YOLOv7目标检测算法[J]. 计算机工程与应用, 2024, 60(14): 250-256.
WU Z D, XU C, LIU H Z, et al. Improved YOLOv7 object detection algorithm for fisheye images[J]. Computer Engineering and Applications, 2024, 60(14): 250-256.
[28] 胡宏宇, 黎烨宸, 张争光, 等. 基于多尺度骨架图和局部视觉上下文融合的驾驶员行为识别方法[J]. 汽车工程, 2024, 46(1): 1-8.
HU H Y, LI Y C, ZHANG Z G, et al. Driver behavior recognition based on multi-scale skeleton graph and local visual context method[J]. Automotive Engineering, 2024, 46(1): 1-8.
[29] LI P, LU M Q, ZHANG Z W, et al. A novel spatial-temporal graph for skeleton-based driver action recognition[C]//Proceedings of the IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3243-3248.
[30] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018:7444-7452.
[31] SONG Y F, ZHANG Z, SHAN C F, et al. Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1625-1633.
[32] WANG H S, WANG L. Modeling temporal dynamics and spatial configurations of actions using two-stream recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3633-3642.
[33] MARTIN M, POPP J, ANNEKEN M, et al. Body pose and context information for driver secondary task detection[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 2015-2021.
[34] REISS S, ROITBERG A, HAURILET M, et al. Deep classification-driven domain adaptation for cross-modal driver behavior recognition[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1042-1047. |