[1] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013.
[2] TAMPUU A, MATIISEN T, KODELJA D, et al. Multiagent cooperation and competition with deep reinforcement learning[J]. PLoS One, 2017, 12(4): e0172395.
[3] TSURUMINE Y, CUI Y D, UCHIBE E, et al. Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation[J]. Robotics and Autonomous Systems, 2019, 112: 72-83.
[4] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 1889-1897.
[5] MONTGOMERY W, LEVINE S. Guided policy search as approximate mirror descent[C]//Advances in Neural Information Processing Systems 29, 2016.
[6] MONTGOMERY W, LEVINE S. Guided policy search via approximate mirror descent[C]//proceedings of the 30th Annual Conference on Neural Information Processing Systems, 2016: 4015-4023.
[7] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[J]. arXiv:1812.05905, 2018.
[8] COWLEY A, COHEN B, MARSHALL W, et al. Perception and motion planning for pick-and-place of dynamic objects[C]//Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2013: 816-823.
[9] MARTURI N, KOPICKI M, RASTEGARPANAH A, et al. Dynamic grasp and trajectory planning for moving objects[J]. Autonomous Robots, 2019, 43(5): 1241-1256.
[10] 李鑫, 沈捷, 曹恺, 等. 深度强化学习的机械臂密集场景多物体抓取方法[J]. 计算机工程与应用, 2024, 60(23): 325-332.
LI X, SHEN J, CAO K, et al. Deep reinforcement learning for manipulator multi-object grasping in dense scenes[J]. Computer Engineering and Applications, 2024, 60(23): 325-332.
[11] CHEN P Z, LU W Q. Deep reinforcement learning based moving object grasping[J]. Information Sciences, 2021, 565: 62-76.
[12] ZHENG X, YUAN S M, CHEN P Z. Robotic autonomous grasping strategy and system for cluttered multi-class objects[J]. International Journal of Control, Automation and Systems, 2024, 22(8): 2602-2612.
[13] XU H Y, WANG Q, MIN H S. CCA-MTFCN: a robotic pushing-grasping collaborative method based on deep reinforcement learning[C]//Proceedings of the 2023 International Conference on Cognitive Systems and Information Processing. Singapore: Springer, 2023: 57-72.
[14] 胡丞熙. 基于深度强化学习的工业机器人抓取结构避障控制方法[J]. 现代计算机, 2024, 30(21): 59-63.
HU C X. The control method of industrial robot grasping structure based on deep reinforcement learning[J]. Modern Computer, 2024, 30(21): 59-63.
[15] ZUO G Y, TONG J Y, WANG Z H, et al. A graph-based deep reinforcement learning approach to grasping fully occluded objects[J]. Cognitive Computation, 2023, 15(1): 36-49.
[16] GAO Y C, ZHOU D K, SHEN Y Q, et al. Dual experience replay-based TD3 for single intersection signal control[J]. The Journal of Supercomputing, 2024, 80(11): 15161-15182.
[17] WEI Z G, XIAO W D, YUAN L, et al. Memory-based soft actor-critic with prioritized experience replay for autonomous navigation[J]. Intelligent Service Robotics, 2024, 17(3): 621-630.
[18] ONORI G, SHAHID A A, BRAGHIN F, et al. Adaptive optimization of hyper-parameters for robotic manipulation through evolutionary reinforcement learning[J]. Journal of Intelligent & Robotic Systems, 2024, 110(3): 108.
[19] PENG J, YUAN Y. Moving object grasping method of mechanical arm based on deep deterministic policy gradient and hindsight experience replay[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2022, 26(1): 51-57.
[20] ZHANG Z Z, CHEN J L, CHEN Z B, et al. Asynchronous episodic deep deterministic policy gradient: toward continuous control in computationally complex environments[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 604-613.
[21] AFZALI S R, SHOARAN M, KARIMIAN G. A modified convergence DDPG algorithm for robotic manipulation[J]. Neural Processing Letters, 2023, 55(8): 11637-11652.
[22] CHEN C J, ZHANG H, PAN Y, et al. Robot autonomous grasping and assembly skill learning based on deep reinforcement learning[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(11): 5233-5249.
[23] KUO P H, CHEN K L. Two-stage fuzzy object grasping controller for a humanoid robot with proximal policy optimization[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106694.
[24] CAI Z Y, FENG Z Q, ZHOU L R, et al. Deep-reinforcement-learning-based robot motion strategies for grabbing objects from human hands[J]. Virtual Reality & Intelligent Hardware, 2023, 5(5): 407-421.
[25] XU B Z, HASSAN T, HUSSAIN I. Improving reinforcement learning based moving object grasping with trajectory prediction[J]. Intelligent Service Robotics, 2024, 17(2): 265-276.
[26] CORTES C, MOHRI M, ROSTAMIZADEH A. L2 regularization for learning kernels[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 109-116. |