[1] 齐小祥, 李敏, 朱颖, 等. 基于边缘检测的SAR图像自适应区域分割[J]. 计算机工程与应用, 2021, 57(22): 232-240.
QI X X, LI M, ZHU Y, et al. Adaptive region segmentation of SAR image based on edge detection[J]. Computer Engineering and Applications, 2021, 57(22): 232-240.
[2] 程照雪, 李阳, 周妍, 等. 增强边缘特征的肺结节分割模型[J]. 计算机工程与应用, 2023, 59(24): 185-195.
CHENG Z X, LI Y, ZHOU Y, et al. Lung nodule segmentation model with enhanced edge features[J]. Computer Engineering and Applications, 2023, 59(24): 185-195.
[3] 代胜选, 许林峰, 刘芳瑜, 等. 结合语义辅助和边缘特征的显著对象检测[J]. 中国图象图形学报, 2022, 27(11): 3243-3256.
DAI S X, XU L F, LIU F Y, et al. Semantic assistance and edge feature based salient object detection[J]. Journal of Image and Graphics, 2022, 27(11): 3243-3256.
[4] WANG C H, CHEN H Y, ZHAO S S. RERN: rich edge features refinement detection network for polycrystalline solar cell defect segmentation[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 1408-1419.
[5] SOBEL I, FELDMAN G. A 3×3 isotropic gradient operator for image processing[R]. California: Stanford Artificial Intelligence Project, 1968: 271-272.
[6] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
[7] XIE S N, TU Z W. Holistically-nested edge detection[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1395-1403.
[8] LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939-1946.
[9] HE J, ZHANG S, YANG M, et al. BDCN: bi-directional cascade network for perceptual edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 100-113.
[10] SU Z, ZHANG J H, WANG L G, et al. Lightweight pixel difference networks for efficient visual representation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14956-14974.
[11] PU M Y, HUANG Y P, LIU Y M, et al. EDTER: edge detection with transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1392-1402.
[12] ELHARROUSS O, HMAMOUCHE Y, IDRISSI A K, et al. Refined edge detection with cascaded and high-resolution convolutional network[J]. Pattern Recognition, 2023, 138: 109361.
[13] ZHOU C X, HUANG Y P, PU M Y, et al. The treasure beneath multiple annotations: an uncertainty-aware edge detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 15507-15517.
[14] PANG X T, LIN C, LI F Z, et al. Bio-inspired XYW parallel pathway edge detection network[J]. Expert Systems with Applications, 2024, 237: 121649.
[15] LUO Z Q, LIN C, LI F Z, et al. BLEDNet: bio-inspired lightweight neural network for edge detection[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106530.
[16] ZHANG X, LIN C, LI F Z, et al. LVP-Net: a deep network of learning visual pathway for edge detection[J]. Image and Vision Computing, 2024, 147: 105078.
[17] ZHOU J H, ZHAO H W, SUN M S. SEHSNet: stage enhancement and hierarchical supervision network for edge detection[J]. The Visual Computer, 2024, 40(10): 7439-7456.
[18] ZHOU C X, HUANG Y P, PU M Y, et al. MuGE: multiple granularity edge detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 25952-25962.
[19] YE Y F, XU K, HUANG Y H, et al. DiffusionEdge: diffusion probabilistic model for crisp edge detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 6675-6683.
[20] LIU C S, ZHANG W, LIU Y Y, et al. Cycle pixel difference network for crisp edge detection[J]. Neurocomputing, 2025, 619: 129153.
[21] YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2403-2412.
[22] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[23] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
[25] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[27] ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916.
[28] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 746-760.
[29] YU W H, SI C Y, ZHOU P, et al. MetaFormer baselines for vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 896-912.
[30] SHEN W, WANG X G, WANG Y, et al. DeepContour: a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3982-3991.
[31] DENG R X, SHEN C H, LIU S J, et al. Learning to predict crisp boundaries[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 570-586.
[32] DING H H, LIN C, LI F Z, et al. A feature aggregation network for contour detection inspired by complex cells properties[J]. The Visual Computer, 2025, 41(3): 1655-1671.
[33] LIN C, ZHANG Z G, PENG J S, et al. A lightweight contour detection network inspired by biology[J]. Complex & Intelligent Systems, 2024, 10(3): 4275-4291. |