[1] PAUL V, MICHAEL J. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.
[2] DALAL N. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[3] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems, 2012: 1097-1105.
[5] REN S Q, HE K M, ROSS G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[12] JOCHER G, SOMMER Y, ALESSANDRINI M, et al. YOLOv5: a state-of-the-art real-time object detection system[J]. arXiv:2006.09882, 2020.
[13] 李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45(8): 2415-2422.
LI H J, KONG F C, LIN Y. Infrared ship detection algorithm based on improved YOLOv5s[J]. Systems Engineering and Electronics, 2023, 45 (8): 2415-2422.
[14] 刘忻伟, 朴永杰, 郑亮亮, 等. 面向航天光学遥感复杂场景图像的舰船检测[J]. 光学精密工程, 2023, 31(6): 892-904.
LIU X W, PU Y J, ZHENG L L, et al. Ship detection for complex scene images of space optical remote sensing[J]. Optical and Precision Engineering, 2023, 31(6): 892-904.
[15] 林鑫伟, 徐志京, 黄海. 复杂背景下的SAR图像多尺度舰船检测[J]. 中国航海, 2023, 46(2): 17-24.
LIN X W, XU Z J, HUANG H. Multi-scale ship detection in SAR image with complex background[J]. Navigation of China, 2023, 46 (2): 17-24.
[16] 白玉, 迟文恺, 谢宝蓉, 等. 结合目标提取和深度学习的红外舰船检测[J]. 电讯技术, 2023, 63(2): 193-198.
BAI Y, CHI W K, XIE B R, et al. Infrared ship detection combined with target extraction and deep learning[J]. Telecommunication Technology, 2023, 63(2): 193-198.
[17] LIU Z, LIN Y T, CAO Y, et al. SwinTransformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the International Conference on computer Vision, 2021: 10012-10022.
[18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[19] WOO, S. PARK, J, LEE, J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807,06521, 2018.
[20] HU J, SHEN L, SAMUEL A, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[21] HOU Q B, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[23] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
[24] QIAN W, YANG X, PENG S L, et al. Leaming modulated loss for rotated object detection[J]. arXiv:1911.08299, 2019.
[25] MING Q, ZHOU Z Q, MIAO L J, et al. Dynamic anchor learning for arbitrary-oriented object detection[J]. arXiv:2012. 04150, 2020.
[26] YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. arXiv:1908.05612, 2019.
[27] MING Q, MIAO L J, ZHOU Z Q, et al. CFC-Net: a critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[28] YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2021: 2149-2158. |