[1] 史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J]. 计算机工程与应用, 2024, 60(9): 79-89.
SHI T, CUI J, LI S. Algorithm for real-time vehicle detection from UAVs based on optimizing and improving YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 79-89.
[2] 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J]. 计算机工程与应用, 2024, 60(6): 110-120.
ZHOU F, GUO D D, WANG Y, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J]. Computer Engineering and Applications, 2024, 60(6): 110-120.
[3] REN?S, HE?K, GIRSHICK?R, et?al. Faster?R-CNN: towards real-time?object?detection?with?region?proposal?networks[C]//Advances in Neural Information Processing Systems, 2015: 91-99.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer International Publishing, 2016: 21-37.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[8] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010. 04159, 2020.
[9] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13619-13627.
[10] LV W, XU S, ZHAO Y, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[11] LI Y, LI J, MENG P. Attention-YOLOV4: a real-time and high-accurate traffic sign detection algorithm[J]. Multimedia Tools and Applications, 2023, 82(5): 7567-7582.
[12] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360.
[13] LUO Y, CI Y, JIANG S, et al. A novel lightweight real-time traffic sign detection method based on an embedded device and YOLOv8[J]. Journal of Real-Time Image Processing, 2024, 21(2): 24.
[14] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[15] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[16] 刘辉, 刘鑫满, 刘大东. 面向复杂道路目标检测的YOLOv5算法优化研究[J]. 计算机工程与应用, 2023, 59(18): 207-217.
LIU H, LIU X M, LIU D D. Research on optimization of YOLOv5 detection algorithm for object in complex road[J]. Computer Engineering and Applications, 2023, 59(18): 207-217.
[17] 刘海斌, 张友兵, 周奎, 等. 改进YOLOv5 -S的交通标志检测算法[J]. 计算机工程与应用, 2024, 60(5): 200-209.
LIU H B, ZHANG Y B, ZHOU K, et al. Traffic sign detection algorithm based on improved YOLOv5-S[J]. Computer Engineering and Applications, 2024, 60(5): 200-209.
[18] DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11963-11975.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[20] HAN J, LIANG X, XU H, et al. SODA10M: a large-scale 2D self/semi-supervised object detection dataset for autonomous driving[J]. arXiv:2106.11118, 2021.
[21] YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2636-2645.
[22] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in cnn[J]. Expert Systems with Applications, 2024, 236: 121352.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19. |