[1] REDMON J, DIVVALA S, GIRSHICk R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[2] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[3] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[4] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 580-587.
[6] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2918-2928.
[7] JIANG S, LIANG S, CHEN C, et al. Class agnostic image common object detection[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2836-2846.
[8] YANG J, LI C, GAO J. Focal modulation networks[J]. arXiv:2203.11926, 2022.
[9] 董博文, 汪荣贵, 杨娟, 等. 结合多尺度特征与掩码图网络的小样本学习[J]. 计算机工程与应用, 2022, 58(16): 111-122.
DONG B W, WANG R G, YANG J, et al. Multi-scale feature enhanced by mask graph neural network for few-shot learning[J]. Computer Engineering and Applications, 2022, 58(16): 111-122.
[10] 张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11.
ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection[J]. Computer Engineering and Applications, 2022, 58(5): 1-11.
[11] SHEN D G, WU G R, SUK H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017, 19: 221-248.
[12] 黄元涛. 基于深度学习的藏羚羊检测与跟踪[D]. 西安: 西安电子科技大学, 2020: 3-69.
HUANG Y T. Detection and tracking of Tibetan antelope based on deep learning[D]. Xi’an: Xidian University, 2020: 3-69.
[13] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13-23.
XU C J, WANG X F, YANG Y D. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer Engineering and Applications, 2019, 55(6): 13-23.
[14] CHEN H, WANG Y L, WANG G Y, et al. LSTD: a low-shot transfer detector for object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 2836-2843.
[15] 林润超, 黄荣, 董爱华. 基于注意力机制和元特征二次重加权的小样本目标检测[J]. 计算机应用, 2022, 42(10): 3025-3032.
LIN R C, HUANG R, DONG A H. Few-shot object detection based on attention mechanism and secondary reweighting of meta-features[J]. Journal of Computer Applications, 2022, 42(10): 3025-3032.
[16] 吴晗, 张志龙, 李楚为, 等. 小样本红外图像的样本扩增与目标检测算法[J]. 控制理论与应用, 2021, 38(9): 1477-1485.
WU H, ZHANG Z L, LI C W, et al. Infrared image sample amplification and object detection method with small samples[J]. Control Theory & Applications, 2021, 38(9): 1477-1485.
[17] 杜芸彦, 李鸿, 杨锦辉, 等. 基于负边距损失的小样本目标检测[J]. 计算机应用, 2022, 42(11): 3617-3624.
DU Y Y, LI H, YANG J H, et al. Few-shot target detection based on negative-margin loss[J]. Journal of Computer Applications, 2022, 42(11): 3617-3624.
[18] WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv:2003.06957, 2020.
[19] FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 4013-4022.
[20] SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 7352-7362.
[21] HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 10185-10194.
[22] AGARWAL A, MAJEE A, SUBRAMANIAN A, et al. Attention guided cosine margin for overcoming class-imbalance in few-shot road object detection[J]. arXiv:2111.06639, 2021.
[23] XIAO Z, QI J, XUE W, et al. Few-shot object detection with self-adaptive attention network for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4854-4865.
[24] YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level few-shot learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9577-9586.
[25] KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8420-8429.
[26] LI B, YANG B, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 7363-7372.
[27] HE K, ZHANG X, REN S. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[28] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[29] WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9925-9934. |