[1] BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 3464-3468.
[2] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3645-3649.
[3] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the European Conference on Computer Vision, Glasgow, Aug 23-28, 2020, Cham: Springer, 2020: 107-122.
[4] ZHANG Y F, WANG C Y, WANG X G, et al. Fairmot: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
[5] DUAN K W, BAI S, XIE L X, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Washington: IEEE Computer Society, 2019: 6569-6578.
[6] LIANG C, ZHANG Z P, ZHOU X, et al. Rethinking the competition between detection and ReID in multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196.
[7] LIANG C, ZHANG Z, ZHOU X, et al. One more check: making “fake background” be tracked again[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Feb 22-Mar 1, 2022. Palo Alto, California: AAAI, 2022: 1546-1554.
[8] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[9] LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[10] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[11] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[J]. arXiv:1807.06514,2018.
[12] 梁超. 多任务联合学习实时一体化多目标跟踪方法研究[D]. 成都: 电子科技大学自动化工程学院, 2022.
LIANG C. A research of real-time one-shot multiple object tracking method with multi-task joint learning[D]. Chengdu: School of Automation Engineering, University of Electronic Science and Technology of China, 2022.
[13] HOWARD A, SANDLER M, CHU G, et al. Searching for mobileNetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Washington: IEEE Computer Society, 2019: 1314-1324.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[15] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Palo Alto, California: AAAI, 2020: 12993-13000.
[16] 王静, 孙紫雲, 郭苹, 等. 改进YOLOv5的白细胞检测算法[J]. 计算机工程与应用, 2022, 58(4): 134-142.
WANG J, SUN Z Y, GUO P, et al. Improved leukocyte detection algorithm of YOLOv5[J]. Computer Engineering and Applications, 2022, 58(4): 134-142.
[17] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[18] 曲优, 李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报 (工学版), 2022, 52(1): 162-173.
QU Y, LI W H. Single-stage rotated object detection network based on anchor transformation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 162-173.
[19] SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: a benchmark for detecting human in a crowd[J]. arXiv:1805.00123,2018.
[20] 孙方伟, 李承阳, 谢永强, 等. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16(6): 1243-1259.
SUN F W, LI C Y, XIE Y Q, et al. Review of deep learning applied to occluded object detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259.
[21] LEAL-TAIXé L, MILAN A, REID I, et al. Motchallenge 2015: towards a benchmark for multi-target tracking[J]. arXiv:1504.01942,2015.
[22] MILAN A, LEAL-TAIXé L, REID I, et al. MOT16: a benchmark for multi-object tracking[J]. arXiv:1603.00831,2016.
[23] DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: a benchmark for multi object tracking in crowded scenes[J]. arXiv:2003.09003,2020.
[24] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 2008(1): 246309.
[25] YU F W, LI W B, LI Q Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]//Proceedings of the European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 36-42.
[26] ZHOU Z W, XING J L, ZHANG M D, et al. Online multi-target tracking with tensor-based high-order graph matching[C]//Proceedings of the International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Piscataway: IEEE, 2018: 1809-1814.
[27] FANG K, XIANG Y, LI X C, et al. Recurrent autoregressive networks for online multi-object tracking[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, 2018: 466-475.
[28] PANG B, LI Y Z, ZHANG Y F, et al. TubeTK: adopting tubes to track multi-object in a one-step training model[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6308-6318.
[29] PENG J L, WANG C G, WAN F B, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]//Proceedings of the European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 145-161.
[30] PANG J, QIU L, LI X, et al. Quasi-dense similarity learning for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, Jun 20-25, 2021. Piscataway: IEEE, 2021: 164-173.
[31] WU J L, CAO J L, SONG L C, et al. Track to detect and segment: an online multi-object tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, Jun 20-25, 2021. Piscataway: IEEE, 2021: 12347-12356. |