计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 131-139.DOI: 10.3778/j.issn.1002-8331.2109-0333
肖振久,李鑫
XIAO Zhenjiu, LI Xin
摘要: 针对背景感知相关滤波算法对目标进行尺度预测时采用图像金字塔,在跟踪过程中需要根据多尺度的目标样本训练出跟踪滤波器,导致跟踪过程中存在计算开销大、跟踪速度慢的问题,提出了一种基于密度峰值聚类的全尺度跟踪方法。分别提取搜索区域中目标和背景的特征信息,通过密度峰值聚类方法分别对目标和背景进行聚类;通过单尺度的滤波器对目标位置进行粗预测,并通过交替方向乘子法(ADMM)降低滤波器训练的时间复杂度;对搜索区域中的前景点和背景点进行分类,并根据尺度置信度得到目标的最终位置与尺度。该算法和目前一些主流的跟踪算法在公共数据集通过在OTB2013、OTB2015和DTB70上进行实验,在有效提高跟踪速度的前提下,面对旋转、遮挡等多种复杂情况时的跟踪效果较好、跟踪成功率较高,满足实时性要求。