计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 256-263.DOI: 10.3778/j.issn.1002-8331.2503-0057

• 图形图像处理 • 上一篇    下一篇

基于优化GaitSet的步态识别算法研究

李建芳   

  1. 河南财政金融学院 会计学院,郑州 450046
  • 出版日期:2025-07-15 发布日期:2025-07-15

Research on Gait Recognition Algorithm Based on Optimized GaitSet

LI Jianfang   

  1. School of Accounting, Henan Finance University, Zhengzhou 450046, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 步态识别作为一种新兴的生物特征识别技术,在预防犯罪、法医鉴定和社会保障等领域具有广阔的应用前景。基于序列的方法虽然可以保留更多的步态时空信息,但存在计算代价高昂和灵活性不足的问题。为了克服这些方法的局限性,提出了一种优化的GaitSet步态识别算法,设计了精细化模块,并对原网络的结构进行优化。在卷积层后增加比标准化操作,加速网络收敛速度;引入了SA注意力机制,提高了模型的性能和泛化能力。采用联合损失进行训练,通过Softmax损失函数弥补三元组损失函数可能导致模型训练的收敛慢、易过拟合等缺点。CASIA-B数据集实验表明,所提方法能够将步态数据转换为能量图并提取得到更多特征信息,各角度识别准确率均有较高的识别精度。

关键词: 步态识别, 卷积神经网络, 深度学习, GaitSet, 损失函数

Abstract: Gait recognition, as an emerging biometric recognition technology, has broad application prospects in fields such as crime prevention, forensic identification, and social security. Although sequence based methods can preserve more spatiotemporal information, they are computationally expensive and lack flexibility. To overcome the limitations of these methods, this paper proposes an optimized GaitSet gait recognition algorithm with a refinement module to optimize the structure of the original network. Adding normalization operations after the convolutional layer can accelerate the convergence speed of the network. Introducing SA attention mechanism improves the performance and generalization ability of the model. By adopting joint loss training, this paper uses the Softmax loss function to compensate for the instability, slow convergence, and easy overfitting in the model training process caused by the triplet loss function. By using CASIA-B data for experiments, the paper converts the gait data into an energy map, which is more conducive to extracting more information during the training process of the network. The experiments show that the optimized GaitSets algorithm has high recognition accuracy for all angles on the CASIA-B dataset.

Key words: gait recognition, convolutional neural networks, deep learning, GaitSet, loss function