计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 64-75.DOI: 10.3778/j.issn.1002-8331.2501-0188

• 热点与综述 • 上一篇    下一篇

基于人工智能的生成式心电数据增强方法研究综述

韩闯,付瑞雪,周钰森,阙文戈   

  1. 1.郑州轻工业大学 计算机科学与技术学院,郑州 450001
    2.清华大学 自动化系,北京 100084
  • 出版日期:2025-08-15 发布日期:2025-08-15

Review of Generative Electrocardiogram Data Augmentation Methods Based on Artificial Intelligence

HAN Chuang, FU Ruixue, ZHOU Yusen, QUE Wenge   

  1. 1.School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, China
    2.Department of Automation, Tsinghua University, Beijing 100084, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 基于心电图的心血管疾病智能诊断依赖于高质量数据,但患者隐私保护、高质量心电数据稀缺及类别不平衡是其面临的主要挑战,心电数据增强被广泛用于解决这些问题。介绍了常用的数据库和质量评价指标;回顾了生成对抗网络、数学拟合模型、心脏电生理模型、变分自编码器和扩散模型五种生成式心电数据增强方法;对比分析了不同方法对应的评估指标与实验结果、数据库、生成心电图导联数和模型输入,以及不同模型的优缺点和应用场景,结果表明生成对抗网络是最常用的心电数据增强模型,改进的扩散模型正成为心电数据增强的研究热点,心脏电生理模型适合用于提升可解释性;展望了未来研究方向,包括生成ECG生理真实性与临床相关性的加强,模型稳定性与多样性的协同提升,轻量化与边缘计算的定向适配,可解释生成和临床决策的结合。

关键词: 心电图, 数据增强, 生成对抗网络, 心脏电生理模型, 扩散模型

Abstract: Intelligent diagnosis for cardiovascular disease based on electrocardiogram (ECG) relies on the high-quality data, but patient privacy protection, scarcity of high-quality ECG data, and class imbalance pose major challenges. ECG data augmentation has been widely employed to address these issues. This paper introduces commonly used databases and quality evaluation metrics, reviews five generative ECG augmentation methods, including generative adversarial networks (GANs), mathematical fitting models, cardiac electrophysiological models, variational autoencoders, and diffusion models. The paper provides a comparative analysis of the evaluation metrics, experimental results, databases, number of generated ECG leads, and model inputs corresponding to different methods. The advantages, disadvantages, and application scenarios of different models are also discussed. The results indicate that GANs are the most commonly used models for ECG data augmentation, improved diffusion models are becoming a research hotspot in ECG data augmentation, and cardiac electrophysiological models are suitable for enhancing interpretability. Finally, future research directions are highlighted, including enhancing the physiological realism and clinical relevance of synthetic ECGs, achieving the synergistic improvement in model stability and diversity, enabling the targeted adaptation of lightweight architectures for edge computing, and integrating interpretable generation with clinical decision-making.

Key words: electrocardiogram, data augmentation, generative adversarial network, cardiac electrophysiology model, diffusion model