
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 64-75.DOI: 10.3778/j.issn.1002-8331.2501-0188
韩闯,付瑞雪,周钰森,阙文戈
出版日期:2025-08-15
发布日期:2025-08-15
HAN Chuang, FU Ruixue, ZHOU Yusen, QUE Wenge
Online:2025-08-15
Published:2025-08-15
摘要: 基于心电图的心血管疾病智能诊断依赖于高质量数据,但患者隐私保护、高质量心电数据稀缺及类别不平衡是其面临的主要挑战,心电数据增强被广泛用于解决这些问题。介绍了常用的数据库和质量评价指标;回顾了生成对抗网络、数学拟合模型、心脏电生理模型、变分自编码器和扩散模型五种生成式心电数据增强方法;对比分析了不同方法对应的评估指标与实验结果、数据库、生成心电图导联数和模型输入,以及不同模型的优缺点和应用场景,结果表明生成对抗网络是最常用的心电数据增强模型,改进的扩散模型正成为心电数据增强的研究热点,心脏电生理模型适合用于提升可解释性;展望了未来研究方向,包括生成ECG生理真实性与临床相关性的加强,模型稳定性与多样性的协同提升,轻量化与边缘计算的定向适配,可解释生成和临床决策的结合。
韩闯, 付瑞雪, 周钰森, 阙文戈. 基于人工智能的生成式心电数据增强方法研究综述[J]. 计算机工程与应用, 2025, 61(16): 64-75.
HAN Chuang, FU Ruixue, ZHOU Yusen, QUE Wenge. Review of Generative Electrocardiogram Data Augmentation Methods Based on Artificial Intelligence[J]. Computer Engineering and Applications, 2025, 61(16): 64-75.
| [1] BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association[J]. Circulation, 2019, 139(10): e56-e528. [2] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69. [3] ACHARYA U R, FUJITA H, OH S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals[J]. Information Sciences, 2017, 415: 190-198. [4] SHIN H C, TENENHOLTZ N A, ROGERS J K, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]//Proceedings of the 3rd International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2018: 1-11. [5] WANG G J, CHEN M, DING Z J, et al. Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation[J]. Neurocomputing, 2021, 454: 339-349. [6] YU J, GAO J, WANG N, et al. Spa-Tem MI: a spatial-temporal network for detecting and locating myocardial infarction[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2522712. [7] SARKAR P, ETEMAD A. Self-supervised ECG representation learning for emotion recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1541-1554. [8] ZHANG W R, GENG S J, HONG S D. A simple self-supervised ECG representation learning method via manipulated temporal-spatial reverse detection[J]. Biomedical Signal Processing and Control, 2023, 79: 104194. [9] RAHMAN M M, RIVOLTA M W, BADILINI F, et al. A systematic survey of data augmentation of ECG signals for AI applications[J]. Sensors, 2023, 23(11): 5237. [10] BERGER L, HABERBUSCH M, MOSCATO F. Generative adversarial networks in electrocardiogram synthesis: recent developments and challenges[J]. Artificial Intelligence in Medicine, 2023, 143: 102632. [11] MONACHINO G, ZANCHI B, FIORILLO L, et al. Deep generative models: the winning key for large and easily accessible ECG datasets?[J]. Computers in Biology and Medicine, 2023, 167: 107655. [12] 陈景霞, 唐喆喆, 林文涛, 等. 用于脑电数据增强和情绪识别的自注意力GAN[J]. 计算机工程与应用, 2023, 59(5): 160-168. CHEN J X, TANG Z Z, LIN W T, et al. Self-attention GAN for EEG data augmentation and emotion recognition[J]. Computer Engineering and Applications, 2023, 59(5): 160-168. [13] 陈鹏, 邓淼磊, 樊好义, 等. 心电特征引导下的自监督房颤异常检测方法[J]. 计算机工程与应用, 2025, 61(2): 208-218. CHEN P, DENG M L, FAN H Y, et al. Self-supervised atrial fibrillation anomaly detection method guided by electrocardiogram features[J]. Computer Engineering and Applications, 2025, 61(2): 208-218. [14] MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50. [15] BOUSSELJOT R, KREISELER D, SCHNABEL A. Nutzung der EKG-signaldatenbank cardiodat der PTB über das Internet[J]. Biomedizinische Technik, 1995, 40: 317-318. [16] WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB-XL, a large publicly available electrocardiography dataset[J]. Scientific Data, 2020, 7: 154. [17] CLIFFORD G D, LIU C Y, MOODY B, et al. AF classification from a short single lead ECG recording: the PhysioNet/computing in cardiology challenge 2017[J]. Computing in Cardiology, 2017. DOI:10.22489/CinC.2017.065-469. [18] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215-E220. [19] LIU F F, LIU C Y, ZHAO L N, et al. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(7): 1368-1373. [20] ALT H, GODAU M. Computing the Fréchet distance between two polygonal curves[J]. International Journal of Computational Geometry & Applications, 1995, 5: 75-91. [21] MüLLER M. Dynamic time warping[M]//Information retrieval for music and motion. Berlin, Heidelberg: Springer, 2007: 69-84. [22] KIM M G, PAN S B. A study on user recognition using the generated synthetic electrocardiogram signal[J]. Sensors, 2021, 21(5): 1887. [23] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014. [24] XIA X, PAN X Z, LI N, et al. GAN-based anomaly detection: a review[J]. Neurocomputing, 2022, 493: 497-535. [25] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [26] HOSSAIN K F, KAMRAN S A, TAVAKKOLI A, et al. ECG-adv-GAN: detecting ECG adversarial examples with conditional generative adversarial networks[C]//Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2021: 50-56. [27] ZHOU X, ZHU X, NAKAMURA K, et al. Electrocardiogram quality assessment with a generalized deep learning model assisted by conditional generative adversarial networks[J]. Life, 2021, 11(10): 1013. [28] WANG X Y, CHEN B C, ZENG M, et al. An ECG signal denoising method using conditional generative adversarial net[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 2929-2940. [29] WU J, WANG L P, PAN H L, et al. MLCGAN: multi-lead ECG synthesis with multi label conditional generative adversarial network[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. [30] ZHAN Z H, CHEN J R, LI K M, et al. Conditional generative adversarial network driven variable-duration single-lead to 12-lead electrocardiogram reconstruction[J]. Biomedical Signal Processing and Control, 2024, 95: 106377. [31] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 2642-2651. [32] FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331. [33] WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2017, 6: 1792-1806. [34] DONG H W, HSIAO W Y, YANG L C, et al. MuseGAN: symbolic-domain music generation and accompaniment with multi-track sequential generative adversarial networks[J]. arXiv:1709.06298, 2017. [35] WANG P, HOU B R, SHAO S Y, et al. ECG arrhythmias detection using auxiliary classifier generative adversarial network and residual network[J]. IEEE Access, 2019, 7: 100910-100922. [36] ZHOU Z H, ZHAI X L, TIN C. Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier[J]. Expert Systems with Applications, 2021, 174: 114809. [37] RADFORD A, METZ L, CHINTALA S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. [38] WULAN N R, WANG W, SUN P Z, et al. Generating electrocardiogram signals by deep learning[J]. Neurocomputing, 2020, 404: 122-136. [39] DASGUPTA S, DAS S, BHATTACHARYA U. CardioGAN: an attention-based generative adversarial network for generation of electrocardiograms[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 3193-3200. [40] THAMBAWITA V, ISAKSEN J L, HICKS S A, et al. DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine[J]. Scientific Reports, 2021, 11: 21896. [41] LI W Q, TANG Y M, YU K M, et al. SLC-GAN: an automated myocardial infarction detection model based on generative adversarial networks and convolutional neural networks with single-lead electrocardiogram synthesis[J]. Information Sciences, 2022, 589: 738-750. [42] MA S, CUI J F, XIAO W D, et al. Deep learning-based data augmentation and model fusion for automatic arrhythmia identification and classification algorithms[J]. Computational Intelligence and Neuroscience, 2022(1): 1577778. [43] 杨春德, 贾竹, 李欣蔚. 基于U-Net++的心电信号识别分类研究[J]. 计算机科学, 2021, 48(10): 121-126. YANG C D, JIA Z, LI X W. Study on ECG signal recognition and classification based on U-Net++[J]. Computer Science, 2021, 48(10): 121-126. [44] QIN J, GAO F J, WANG Z M, et al. A novel temporal generative adversarial network for electrocardiography anomaly detection[J]. Artificial Intelligence in Medicine, 2023, 136: 102489. [45] BASAK P, SAKIB A N, CHOWDHURY M E H, et al. A novel deep learning technique for morphology preserved fetal ECG extraction from mother ECG using 1D-CycleGAN[J]. Expert Systems with Applications, 2024, 235: 121196. [46] GOLANY T, RADINSKY K, FREEDMAN D. SimGANs: simulator-based generative adversarial networks for ECG synthesis to improve deep ECG classification[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 3597-3606. [47] GOLANY T, FREEDMAN D, RADINSKY K. ECG ODE-GAN: learning ordinary differential equations of ECG dynamics via generative adversarial learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(1): 134-141. [48] KARRAS T, AILA T M, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[J]. arXiv:1710.10196, 2017. [49] YANG H X, LIU J H, ZHANG L H, et al. ProEGAN-MS: a progressive growing generative adversarial networks for electrocardiogram generation[J]. IEEE Access, 2021, 9: 52089-52100. [50] QU Z G, LI Y, LIU B, et al. DTQFL: a digital twin-assisted quantum federated learning algorithm for intelligent diagnosis in 5G mobile network[J]. IEEE Journal of Biomedical and Health Informatics, 2023. DOI:10.1109/JBHI.2023.3303401. [51] QU Z G, LI Y, TIWARI P. QNMF: a quantum neural network based multimodal fusion system for intelligent diagnosis[J]. Information Fusion, 2023, 100: 101913. [52] LLOYD S, WEEDBROOK C. Quantum generative adversarial learning[J]. Physical Review Letters, 2018, 121(4): 040502. [53] QU Z G, SHI W K, TIWARI P. Quantum conditional generative adversarial network based on patch method for abnormal electrocardiogram generation[J]. Computers in Biology and Medicine, 2023, 166: 107549. [54] QU Z G, CHEN W L, TIWARI P. HQ-DCGAN: hybrid quantum deep convolutional generative adversarial network approach for ECG generation[J]. Knowledge-Based Systems, 2024, 301: 112260. [55] MCSHARRY P E, CLIFFORD G D, TARASSENKO L, et al. A dynamical model for generating synthetic electrocardiogram signals[J]. IEEE Transactions on Bio-Medical Engineering, 2003, 50(3): 289-294. [56] 马佳越. 基于时序自动机心脏模型的心律失常识别[D]. 秦皇岛: 燕山大学, 2021. MA J Y. Arrhythmia recognition based on timed automata heart model[D]. Qinhuangdao: Yanshan University, 2021. [57] 徐永红, 王金萍, 马佳越. 基于时序心脏模型样本均衡方法的心律失常分类[J]. 中国生物医学工程学报, 2022, 41(3): 301-309. XU Y H, WANG J P, MA J Y. Arrhythmia classification based on time-series cardiac model sample equalization[J]. Chinese Journal of Biomedical Engineering, 2022, 41(3): 301-309. [58] LOPEZ-PEREZ A, SEBASTIAN R, IZQUIERDO M, et al. Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia[J]. Frontiers in Physiology, 2019, 10: 580. [59] D?SSEL O, LUONGO G, NAGEL C, et al. Computer modeling of the heart for ECG interpretation: a review[J]. Hearts, 2021, 2(3): 350-368. [60] LOEWE A, WüLFERS E M, SEEMANN G. Cardiac ischemia: insights from computational models[J]. Herzschr Elektrophys, 2018, 29(1): 48-56. [61] QUE W G, HAN C, ZHAO X L, et al. An ECG generative model of myocardial infarction[J]. Computer Methods and Programs in Biomedicine, 2022, 225: 107062. [62] QUE W G, BIAN Y N, CHEN S J, et al. Efficient electrocardiogram generation based on cardiac electric vector simulation model[J]. Computers in Biology and Medicine, 2024, 177: 108629. [63] KUZNETSOV V V, MOSKALENKO V A, ZOLOTYKH N Y. Electrocardiogram generation and feature extraction using a variational autoencoder[J]. arXiv:2002.00254, 2020. [64] LIU H, ZHAO Z B, CHEN X, et al. Using the VQ-VAE to improve the recognition of abnormalities in short-duration 12-lead electrocardiogram records[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105639. [65] XIA Y, WANG W Y, WANG K Q. ECG signal generation based on conditional generative models[J]. Biomedical Signal Processing and Control, 2023, 82: 104587. [66] AL NAZI Z, BISWAS A, ABU RAYHAN M, et al. Classification of ECG signals by dot residual LSTM network with data augmentation for anomaly detection[C]//Proceedings of the 2019 22nd International Conference on Computer and Information Technology. Piscataway: IEEE, 2019: 1-5. [67] ALCARAZ J M L, STRODTHOFF N. Diffusion-based conditional ECG generation with structured state space models[J]. Computers in Biology and Medicine, 2023, 163: 107115. [68] NEIFAR N, BEN-HAMADOU A, MDHAFFAR A, et al. DiffECG: a versatile probabilistic diffusion model for ECG signals synthesis[J]. arXiv:2306.01875, 2023. [69] ADIB E, FERNANDEZ A S, AFGHAH F, et al. Synthetic ECG signal generation using probabilistic diffusion models[J]. IEEE Access, 2023, 11: 75818-75828. [70] ZAMA M H, SCHWENKER F. ECG synthesis via diffusion-based state space augmented transformer[J]. Sensors, 2023, 23(19): 8328. [71] SEO H C, YOON G W, JOO S, et al. Multiple electrocardiogram generator with single-lead electrocardiogram[J]. Computer Methods and Programs in Biomedicine, 2022, 221: 106858. [72] ZHOU F Y, LI J J. ECG data enhancement method using generate adversarial networks based on Bi-LSTM and CBAM[J]. Physiological Measurement, 2024, 45(2): 025003. |
| [1] | 谭台哲, 蒋林轩, 梁邦康, 郑乐镔. 任务分解与自适应面部聚焦的“换脸”方法[J]. 计算机工程与应用, 2025, 61(8): 155-162. |
| [2] | 杨海潮, 李新凯, 张宏立, 孟月. 结合亮度约束的双分支结构暗光图像增强算法[J]. 计算机工程与应用, 2025, 61(8): 250-259. |
| [3] | 赵恩浩, 凌捷. 基于GAN的无数据黑盒对抗攻击方法[J]. 计算机工程与应用, 2025, 61(7): 204-212. |
| [4] | 林娜, 岳希, 唐聃. 基于数据增强和损失平衡的机电领域命名实体识别[J]. 计算机工程与应用, 2025, 61(7): 222-232. |
| [5] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [6] | 张菊平, 李路. IMGAF-RLNet模型的股指趋势预测研究[J]. 计算机工程与应用, 2025, 61(6): 229-243. |
| [7] | 谢瑞麟, 吴昊, 袁国武. 雨痕退化预测与预训练扩散先验的单图像去雨方法[J]. 计算机工程与应用, 2025, 61(6): 304-316. |
| [8] | 张红民, 郑敬添, 颜鼎鼎, 田钱前. 改进的生成对抗网络人体异常行为检测方法[J]. 计算机工程与应用, 2025, 61(5): 147-154. |
| [9] | 李小童, 马素芬, 生慧, 魏国辉, 李欣桐. 基于深度学习的肺部CT图像病灶区域分割研究综述[J]. 计算机工程与应用, 2025, 61(4): 25-42. |
| [10] | 许春冬, 吴子煜, 葛凤培. 面向低数据资源的语音识别研究综述[J]. 计算机工程与应用, 2025, 61(4): 59-71. |
| [11] | 喻云虎, 杨湘, 陈艳红. 嵌入导联上下文编码的图卷积神经网络心律失常分类模型[J]. 计算机工程与应用, 2025, 61(3): 212-222. |
| [12] | 陈鹏, 邓淼磊, 樊好义, 张德贤, 韩涵. 心电特征引导下的自监督房颤异常检测方法[J]. 计算机工程与应用, 2025, 61(2): 208-218. |
| [13] | 吴昊文, 王鹏, 李亮亮, 邸若海, 李晓艳, 吕志刚. 基于语义增强和特征融合的文本生成图像方法[J]. 计算机工程与应用, 2025, 61(15): 229-240. |
| [14] | 赵宏, 王贺, 李文改. 对比学习改进文本生成图像方法的研究[J]. 计算机工程与应用, 2025, 61(14): 264-273. |
| [15] | 季瑞瑞, 杨思凡, 华羽垚, 耿屹, 白晨羲. 融合扩散模型的生成式零样本钢表面缺陷检测[J]. 计算机工程与应用, 2025, 61(12): 333-343. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||