
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 37-53.DOI: 10.3778/j.issn.1002-8331.2409-0253
何鹏,姚瑶,刘秋菊
出版日期:2025-07-15
发布日期:2025-07-15
HE Peng, YAO Yao, LIU Qiuju
Online:2025-07-15
Published:2025-07-15
摘要: 知识图谱表示学习旨在将知识图谱中的符号化表示形式转换成数值化表示形式,更好地服务于知识驱动型应用。时态知识图谱表示学习技术充分利用知识图谱中的时间信息,取得了显著的性能提升。对时态知识图谱表示学习方法进行了系统性的综述,主要从四个方面进行:(1)简要介绍时态知识图谱表示学习的相关概念、典型任务和传统的静态方法;(2)总结了时态知识图谱表示学习的两大类方法,即面向内插任务的方法和面向外推任务的方法,分别介绍两类方法中的典型模型;(3)梳理了8个用于时态知识图谱表示学习的基准数据集和若干代表性模型在基准数据集上的评测结果;(4)分析了当前面临的技术挑战以及其中蕴含的机会。
何鹏, 姚瑶, 刘秋菊. 时态知识图谱表示学习研究综述[J]. 计算机工程与应用, 2025, 61(14): 37-53.
HE Peng, YAO Yao, LIU Qiuju. Survey on Temporal Knowledge Graph Representation Learning[J]. Computer Engineering and Applications, 2025, 61(14): 37-53.
| [1] 刘知远, 韩旭, 孙茂松. 知识图谱与深度学习[M]. 北京: 清华大学出版社, 2020. LIU Z Y, HAN X, SUN M S. Knowledge graph and deep learning[M]. Beijing: Tsinghua University Press, 2020. [2] WARD M D, BEGER A, CUTLER J, et al. Comparing GDELT and ICEWS event data[J]. Analysis, 2013, 21(1): 267-297. [3] LEETARU K, SCHRODT P. GDELT: global data on events, location, and tone, 1979—2012[C]//Proceedings of the ISA Annual Convention. Canada: Citeseer, 2013. [4] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems,2013. [5] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [6] MIKOLOV T, YIH W T, ZWEIG G. Linguistic regularities in continuous space word representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2013: 746-751. [7] BORDES A, USUNIER N, GARCIA D A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013: 1-9. [8] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2014: 1112-1119. [9] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2015: 2181-2187. [10] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual mnnual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696. [11] HE S, LIU K, JI G, et al. Learning to represent knowledge graphs with gaussian embedding[C]//Proceedings of the ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 623-632. [12] XIAO H, HUANG M L, ZHU X Y. TransG: a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 2316-2325. [13] ZHANG Y Q, YAO Q M, SHAO Y X, et al. NSCaching: simple and efficient negative sampling for knowledge graph embedding[C]//Proceedings of the 2019 IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 614-625. [14] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space [C]//Proceedings of the International Conference on Learning Representations. MA: UMASS, 2019: 1-18. [15] ZHANG Z, CAI J, ZHANG Y, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2020: 3065-3072. [16] HUANG H, LONG G D, SHEN T, et al. RatE: relation-adaptive translating embedding for knowledge graph completion[C]//Proceedings of the International Conference on Computational Linguistic. Stroudsburg: ACL, 2020: 556-567. [17] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the International Conference on International Conference on Machine Learning. MA: PMLR, 2011: 809-816. [18] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the International Conference on Learning Representations (ICLR). MA: UMASS, 2015: 1-13. [19] TROUILLON T, WELBL J, RIEDEL S, et al. ComplEx embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning. MA: PMLR, 2016: 2071-2080. [20] KAZEMI S M, POOLE D. SimplE embedding for link prediction in knowledge graphs[C]//Proceedings of the International Conference on Neural Information Processing Systems. San Diego CA: NeurIPS, 2018: 4289-4300. [21] 王培妍, 段磊, 郭正山, 等. 基于张量分解的知识超图链接预测模型[J]. 计算机研究与发展, 2021, 58(8): 1599-1611. WANG P Y, DUAN L, GUO Z S, et al. Knowledge hypergraph link prediction model based on tensor decomposition[J]. Journal of Computer Research and Development, 2021, 58(8): 1599-1611. [22] LACROIX T, USUNIER N, OBOZINSKI G. Canonical tensor decomposition for knowledge base completion[C]//Proceedings of the International Conference on Machine Learning. MA: PMLR, 2018: 2863-2872. [23] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems, 2013: 1-10. [24] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2): 233-259. [25] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 601-610. [26] LIU Q, JIANG H, LING Z H, et al. Probabilistic reasoning via deep learning: neural association models[J]. arXiv:1603. 07704, 2016. [27] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2018: 1811-1818. [28] VU T, NGUYEN T D, NGUYEN D Q, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2180-2189. [29] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2020: 3009-3016. [30] GUO L, SUN Z, HU W. Learning to exploit long-term relational dependencies in knowledge graphs[C]//Proceedings of the International Conference on Machine Learning. MA: PMLR, 2019: 2505-2514. [31] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web. Cham: Springer International Publishing, 2018: 593-607. [32] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2019: 3060-3067. [33] ZHANG Z, ZHUANG F, ZHU H, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2020: 9612-9619. [34] CHEN J J, HE H R, WU F, et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2021: 6271-6278. [35] ZHANG Z, WANG J, YE J, et al. Rethinking graph convolutional networks in knowledge graph completion[C]//Proceedings of the ACM Web Conference. New York: ACM, 2022: 798-807. [36] LI Z, WANG C X, WANG X, et al. HJE: joint convolutional representation learning for knowledge hypergraph completion[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 3879-3892. [37] WANG C, WANG X, LI Z, et al. HyConvE: a novel embedding model for knowledge hypergraph link prediction with convolutional neural networks[C]//Proceedings of the ACM Web Conference. New York: ACM, 2023: 188-198. [38] XIAO H, HUANG M, HAO Y, et al. From one point to a manifold: orbit models for knowledge graph embedding[C]//Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2016:1315-1321. [39] EBISU T, ICHISE R. TorusE: knowledge graph embedding on a lie group[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2018: 1819-1826. [40] BALAZEVIC I, ALLEN C, HOSPEDALES T. Multi-relational poincaré graph embeddings[C]//Advances in Neural Information Processing Systems, 2019: 1-11. [41] CHAMI I, WOLF A, JUAN D C, et al. Low-dimensional hyperbolic knowledge graph embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistic. Stroudsburg: ACL, 2020: 6901-6914. [42] NAYYERI M, VAHDATI S, AYKUL C, et al. 5★knowledge graph embeddings with projective transformations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2021: 9064-9072. [43] CAO Z S, XU Q Q, YANG Z Y, et al. Geometry interaction knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2022: 5521-5529. [44] XIE R, LIU Z, SUN M. Representation learning of knowledge graphs with hierarchical types[C]//Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2016: 2965-2971. [45] MA S H, DING J H, JIA W J, et al. TransT: type-based multiple embedding representations for knowledge graph completion[C]//Proceedings of the Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2017: 717-733. [46] LV X, HOU L, LI J Z, et al. Differentiating concepts and instances for knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 1971-1979. [47] HAO J, CHEN M, YU W, et al. Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1709-1719. [48] CUI Z, KAPANIPATHI P, TALAMADUPULA K, et al. Type?augmented relation prediction in knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2021: 7151-7159. [49] JAIN P, KUMAR P, CHAKRABARTI S. Type?sensitive knowledge base inference without explicit type supervision[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 75-80. [50] NIU G, LI B, ZHANG Y, et al. AutoETER: automated entity type representation for knowledge graph embedding[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2020: 1172-1181. [51] LI Z, LIU X, WANG X, et al. TransO: a knowledge-driven representation learning method with ontology information constraints[J]. World Wide Web, 2023, 26(1): 297-319. [52] JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 2350-2354. [53] JIANG T, LIU T, GE T, et al. Towards time-aware knowledge graph completion[C]//Proceedings of the International Conference on Computational Linguistics. Stroudsburg: ACL, 2016: 1715-1724. [54] LEBLAY J, CHEKOL M. Deriving validity time in knowledge graph[C]//Proceedings of the Web Conference. New York: ACM, 2018: 1771-1776. [55] GARCIA-DURAN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4816-4821. [56] DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2001-2011. [57] GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2020: 3988-3995. [58] XU C, NAYYERI M, ALKHOURY F, et al. TeRo: a time-aware knowledge graph embedding via temporal rotation[C]//Proceedings of the International Conference on Computational Linguistics. Stroudsburg: ACL, 2020: 1583-1593. [59] 崔员宁, 李静, 沈力, 等. Duration-HyTE: 基于持续时间建模的时间感知知识表示学习方法[J]. 计算机研究与发展, 2020, 57(6): 1239-1251. CUI Y N, LI J, SHEN L, et al. Duration-HyTE: a time-aware knowledge representation learning method based on duration modeling[J]. Journal of Computer Research and Development, 2020, 57(6): 1239-1251. [60] SADEGHIAN A, ARMANDPOUR M, COLAS A, et al. ChronoR: rotation based temporal knowledge graph embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2021: 6471-6479. [61] MA Y P, TRESP V, DAXBERGER E A. Embedding models for episodic knowledge graphs[J]. Journal of Web Semantics, 2019, 59: 100490. [62] LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion[C]//Proceedings of the International Conference on Learning Representations. MA: UMASS, 2019: 1-12. [63] BALA?EVI? I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5185-5194. [64] BAMLER R, MANDT S. Dynamic word embeddings[C]//Proceedings of the International Conference on Machine learning. MA: PMLR, 2017: 380-389. [65] XU C J, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph completion based on time series Gaussian embedding[C]//Proceedings of the International Semantic Web Conference. Heidelberg: Springer, 2020: 654-671. [66] 田满鑫, 寿黎但, 陈珂, 等. 一种基于实体时间敏感度的知识表示方法[J]. 软件工程, 2020, 23(1): 1-6. TIAN M X, SHOU L D, CHEN K, et al. A knowledge representation method based on entity time sensitivity[J]. Software Engineering, 2020, 23(1): 1-6. [67] CHEN K, WANG Y, LI Y T, et al. RotateQVS: representing temporal information as rotations in quaternion vector space for temporal knowledge graph completion[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 5843-5857. [68] XIAO L, ZHANG R C, CHEN Z J, et al. TuckER decomposition with frequency attention for temporal knowledge graph completion[C]//Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 7286-7300. [69] LI J, SU X, GAO G. TeAST: temporal knowledge graph embedding via archimedean spiral timeline[C]//Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 15460-15474. [70] NIU G L, LI B. Logic and commonsense-guided temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2023: 4569-4577. [71] JUNG J, JUNG J, KANG U. Learning to walk across time for interpretable temporal knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 786-795. [72] WU J P, CAO M, CHEUNG J C K, et al. TeMP: temporal message passing for temporal knowledge graph completion[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 5730-5746. [73] REN X, BAI L Y, XIAO Q W, et al. Hierarchical self-attention embedding for temporal knowledge graph completion[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2539-2547. [74] HAN Z, CHEN P, MA Y P, et al. DyERNIE: dynamic evolution of Riemannian manifold embeddings for temporal knowledge graph completion[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7301-7316. [75] MONTELLA S, BARAHONA R L M, HEINECKE J. Hyperbolic temporal knowledge graph embeddings with relational and time curvatures[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 3296-3308. [76] HAN Z, ZHANG G Y, MA Y P, et al. Time-dependent entity embedding is not all you need: a re-evaluation of temporal knowledge graph completion models under a unified framework[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8104-8118. [77] TRIVEDI R, DAI H, WANG Y, et al. Know-Evolve: deep temporal reasoning for dynamic knowledge graphs[C]//Proceedings of the International Conference on Machine Learning. MA: PMLR, 2017: 3462-3471. [78] JIN W, QU M, JIN X S, et al. Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6669-6683. [79] ZHU C, CHEN M, FAN C, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2021: 4732-4740. [80] LI Z, JIN X, GUAN S, et al. Search from history and reason for future: two?stage reasoning on temporal knowledge graphs[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4732-4743. [81] SUN H H, ZHONG J L, MA Y P, et al. TimeTraveler: reinforcement learning for temporal knowledge graph forecasting[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8306-8319. [82] HAN Z, CHEN P, MA Y P, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of the International Conference on Learning Representations. MA: UMASS, 2021: 1-24. [83] YI X, JUNJIE O, HUI X, et al. Temporal knowledge graph reasoning with historical contrastive learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. CA: AAAI, 2023: 4765-4773. [84] LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 408-417. [85] LI Z X, GUAN S P, JIN X L, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 290-296. [86] ZHANG M Q, XIA Y W, LIU Q, et al. Learning long-and short?term representations for temporal knowledge graph reasoning[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2412-2422. [87] DENG S, RANGWALA H, NING Y. Dynamic knowledge graph based multi-event forecasting[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1585-1595. [88] TRIVEDI R, FARAJTABAR M, BISWAL P, et al. DyRep: learning representations over dynamic graphs[C]//Proceedings of the International Conference on Learning Representations. MA: UMASS, 2019: 1-25. [89] HAN Z, JIANG J, WANG Y, et al. The graph hawkes network for reasoning on temporal knowledge graphs[C]//Proceedings of the Conference on Neural Information Processing Systems. San Diego CA: NeurIPS, 2019. [90] CHEN K, WANG Y, LI Y, et al. A unified temporal knowledge graph reasoning model towards interpolation and extrapolation[J]. arXiv:2405.18106, 2024. [91] HUANG R, WEI W, QU X, et al. Confidence is not timeless: modeling temporal validity for rule-based temporal knowledge graph forecasting[C]//Proceedings of the 62th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2024: 10783-10794. [92] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. [93] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2: exploring and querying world knowledge in time, space, context, and many languages[C]//Proceedings of the 20th International Conference Companion on World Wide Web. New York: ACM, 2011: 229-232. [94] BIEGA J, KUZEY E, SUCHANEK F M. Inside YAGO2s: a transparent information extraction architecture[C]//Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 325-328. [95] MAHDISOLTANI F, BIEGA J, SUCHANEK F. YAGO3: a knowledge base from multilingual Wikipedias[C]//Proceedings of the Biennial Conference on Innovative Data Systems Research, 2014: 1-11. [96] MILLER G. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [97] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems, 2018: 1-12. |
| [1] | 杭婷婷, 丁海超, 郭亚, 冯钧. 多元关系知识表示学习方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 62-83. |
| [2] | 任衍栋, 张东, 李冠宇. 融合注意力与结构降噪的对比学习知识感知推荐[J]. 计算机工程与应用, 2025, 61(17): 232-240. |
| [3] | 李晓理, 刘春芳, 耿劭坤. 知识图谱与大语言模型协同共生模式及其教育应用综述[J]. 计算机工程与应用, 2025, 61(15): 1-13. |
| [4] | 张尧, 王绍卿, 吴瑕, 孙福振. 面向捆绑推荐的解耦图对比学习[J]. 计算机工程与应用, 2025, 61(12): 154-165. |
| [5] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
| [6] | 梁梅霖, 段友祥, 昌伦杰, 孙歧峰. 邻域信息分层感知的知识图谱补全方法[J]. 计算机工程与应用, 2024, 60(2): 147-153. |
| [7] | 许云峰, 范贺荀. 基于数据与特征增强的自监督图表示学习方法[J]. 计算机工程与应用, 2024, 60(17): 148-157. |
| [8] | 王静红, 王慧. 自监督对比的属性图联合表示聚类[J]. 计算机工程与应用, 2024, 60(16): 133-142. |
| [9] | 周诚辰, 于千城, 张丽丝, 胡智勇, 赵明智. Graph Transformers研究进展综述[J]. 计算机工程与应用, 2024, 60(14): 37-49. |
| [10] | 刘冬帅, 安敬民, 孟繁琛, 李冠宇. 多关系下图自注意机制增强的知识表示学习[J]. 计算机工程与应用, 2024, 60(12): 136-143. |
| [11] | 吕少卿, 王驰驰, 李婷婷, 包志强. 保留模体信息的属性二分图神经网络表示学习[J]. 计算机工程与应用, 2024, 60(10): 148-155. |
| [12] | 袁立宁, 蒋萍, 莫嘉颖, 刘钊. 基于二阶图卷积自编码器的图表示学习[J]. 计算机工程与应用, 2024, 60(10): 180-187. |
| [13] | 刘剑锋, 普杰信, 孙力帆. 融合对比预测编码的深度双Q网络[J]. 计算机工程与应用, 2023, 59(6): 162-170. |
| [14] | 邢长征, 刘义海, 郭亚兰, 郭家隆. 基于距离策略的知识图谱图卷积网络推荐算法[J]. 计算机工程与应用, 2023, 59(21): 102-111. |
| [15] | 于梦波, 杜建强, 罗计根, 聂斌, 刘勇, 邱俊洋. 基于知识表示学习的知识图谱补全研究进展[J]. 计算机工程与应用, 2023, 59(18): 59-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||