[1] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35-68.
[2] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[3] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the International Conference on Machine Learning, 2017: 1263-1272.
[4] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018.
[5] MORRIS C, RITZERT M, FEY M, et al. Weisfeiler and leman go neural: higher-order graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelli- gence, 2019: 4602-4609.
[6] LI Q, HAN Z, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 3538-3545.
[7] CHEN D, LIN Y, LI W, et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3438-3445.
[8] OONO K, SUZUKI T. Graph neural networks exponentially lose expressive power for node classification[J]. arXiv:1905. 10947, 2019.
[9] ALON U, YAHAV E. On the bottleneck of graph neural networks and its practical implications[J]. arXiv:2006.05205, 2020.
[10] CHEN D, O'BRAY L, BORGWARDT K. Structure-aware transformer for graph representation learning[C]//Proceedings of the International Conference on Machine Learning, 2022: 3469-3489.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[12] QIN Z, SUN W, DENG H, et al. CosFormer: rethinking softmax in attention[J]. arXiv:2202.08791, 2022.
[13] MIN E, CHEN R, BIAN Y, et al. Transformer for graphs: an overview from architecture perspective[J]. arXiv:2202. 08455, 2022.
[14] ZAHEER M, GURUGANESH G, DUBEY K A, et al. Big Bird: Transformers for longer sequences[C]//Advances in Neural Information Processing Systems, 2020: 17283-17297.
[15] CHOROMANSKI K, LIKHOSHERSTOV V, DOHAN D, et al. Rethinking attention with performers[J]. arXiv:2009. 14794, 2020.
[16] WANG S, LI B Z, KHABSA M, et al. Self-attention with linear complexity[J]. arXiv:2006.04768, 2020.
[17] KITAEV N, KAISER ?, LEVSKAYA A. Reformer: the efficient transformer[J]. arXiv:2001.04451, 2020.
[18] BELTAGY I, PETERS M E, COHAN A. Longformer: the long-document transformer[J]. arXiv:2004.05150, 2020.
[19] RAMPáEK L, GALKIN M, DWIVEDI V P, et al. Recipe for a general, powerful, scalable graph transformer[C]//Advances in Neural Information Processing Systems, 2022: 14501-14515.
[20] YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation?[C]//Advances in Neural Information Processing Systems, 2021: 28877-28888.
[21] HUSSAIN M S, ZAKI M J, SUBRAMANIAN D. Global self-attention as a replacement for graph convolution[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 655-665.
[22] PARK W, CHANG W, LEE D, et al. GRPE: relative positional encoding for graph transformer[J]. arXiv: 2201.12787, 2022.
[23] MIALON G, CHEN D, SELOSSE M, et al. GraphiT: encoding graph structure in transformers[J]. arXiv:2106.05667, 2021.
[24] WU Z, JAIN P, WRIGHT M, et al. Representing long-range context for graph neural networks with global attention[C]//Advances in Neural Information Processing Systems, 2021: 13266-13279.
[25] MA L, LIN C, LIM D, et al. Graph inductive biases in transformers without message passing[J]. arXiv:2305.17589,2023.
[26] KIM J, NGUYEN D, MIN S, et al. Pure transformers are powerful graph learners[C]//Advances in Neural Inform- ation Processing Systems, 2022: 14582-14595.
[27] CHEN J, GAO K, LI G, et al. NAGphormer: a tokenized graph transformer for node classification in large graphs[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[28] ZHAO J, LI C, WEN Q, et al. Gophormer: EGO-graph transformer for node classification[J]. arXiv:2110.13094, 2021.
[29] KUANG W, ZHEN W, LI Y, et al. Coarformer: trans-former for large graph via graph coarsening[C]//Proceedings of the Tenth International Conference on Learning Representations, 2022.
[30] KONG K, CHEN J, KIRCHENBAUER J, et al. GOAT: a global transformer on large-scale graphs[C]//Proceedings of the International Conference on Machine Learning, 2023: 17375-17390.
[31] KREUZER D, BEAINI D, HAMILTON W, et al. Rethinking graph transformers with spectral attention[C]//Advances in Neural Information Processing Systems, 2021: 21618-21629.
[32] MAO Q, LIU Z, LIU C, et al. HINormer: representation learning on heterogeneous information networks with graph transformer[C]//Proceedings of the 2023 ACM Web Con- ference, 2023: 599-610.
[33] LIN K, WANG L, LIU Z. Mesh graphormer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 12939-12948.
[34] ZHANG J, ZHANG H, XIA C, et al. Graph-BERT: only attention is needed for learning graph representations[J]. arXiv:2001.05140, 2020.
[35] MIN E, RONG Y, XU T, et al. Neighbour interaction based click-through rate prediction via graph-masked transformer[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 353-362.
[36] TIAN Y, LIU G. Transaction fraud detection via spatial-temporal-aware graph transformer[J]. arXiv:2307.05121, 2023.
[37] ZHAO H, MA S, ZHANG D, et al. Are more layers beneficial to graph transformers?[J]. arXiv:2303.00579, 2023.
[38] YU F X X, SURESH A T, CHOROMANSKI K M, et al. Orthogonal random features[C]//Advances in Neural Information Processing Systems, 2016: 1975-1983.
[39] BRIN S. The PageRank citation ranking: bringing order to the web[J]. Proceedings of ASIS, 1998, 98: 161-172.
[40] CHEN D, JACOB L, MAIRAL J. Convolutional kernel networks for graph-structured data[C]//Proceedings of the International Conference on Machine Learning, 2020: 1576-1586.
[41] KHOO L M S, CHIEU H L, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user inter- actions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8783-8790.
[42] WEI S, WU B, XIANG A, et al. DGTR: dynamic graph transformer for rumor detection[J]. Frontiers in Research Metrics and Analytics, 2023, 7: 1055348.
[43] ZHANG K, WU L, ZHENG L, et al. Large-scale traffic data imputation with spatiotemporal semantic under-standing[J]. arXiv:2301.11691, 2023.
[44] ZHANG Y, LI J, DING J, et al. Network robustness learning via graph transformer[J]. arXiv:2306.06913, 2023.
[45] ZHANG X, CHEN C, MENG Z, et al. CoAtGIN: marrying convolution and attention for graph-based molecule property prediction[C]//Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022: 374-379.
[46] MAZIARKA ?, DANEL T, MUCHA S, et al. Molecule attention transformer[J]. arXiv:2002.08264, 2020.
[47] HU W, LIU B, GOMES J, et al. Strategies for pre-training graph neural networks[J]. arXiv:1905.12265, 2019.
[48] MAZIARKA ?, MAJCHROWSKI D, DANEL T, et al. Relative molecule self-attention transformer[J]. arXiv:2110. 05841, 2021.
[49] RONG Y, BIAN Y, XU T, et al. Self-supervised graph transformer on large-scale molecular data[C]//Advances in Neural Information Processing Systems, 2020: 12559-12571.
[50] TANG W, WEN H, LIU R, et al. Single-cell multimodal prediction via transformers[J]. arXiv:2303.00233, 2023.
[51] ZHENG Y, GINDRA R H, GREEN E J, et al. A graph- transformer for whole slide image classification[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3003-3015.
[52] JIN B, ZHANG Y, MENG Y, et al. Edgeformers: graph- empowered transformers for representation learning on textual-edge networks[J]. arXiv:2302.11050, 2023.
[53] YAO S, WANG T, WAN X. Heterogeneous graph transformer for graph-to-sequence learning[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7145-7154.
[54] AGARWAL R, KHURANA V, GROVER K, et al. Multi- relational graph transformer for automatic short answer grading[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022: 2001-2012.
[55] BANARESCU L, BONIAL C, CAI S, et al. Abstract meaning representation for sembanking[C]//Proceedings of the 7th Linguistic Annotation Workshop and Interoper- Ability with Discourse, 2013: 178-186.
[56] YAN K, LIU Y, LIN Y, et al. Periodic graph transformers for crystal material property prediction[C]//Advances in Neural Information Processing Systems, 2022: 15066-15080.
[57] LIU X, ZHAO S, SU K, et al. Mask and reason: pre-training knowledge graph transformers for complex logical queries[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 1120-1130.
[58] BI Z, CHENG S, ZHANG N, et al. Relphormer: relational graph transformer for knowledge graph representation[J]. arXiv:2205.10852, 2022.
[59] SHIRZAD H, VELINGKER A, VENKATACHALAM B, et al. Exphormer: sparse transformers for graphs[C]//Proceedings of the International Conference on Machine Learning, 2023: 31613-31632.
[60] ZHANG Z, LIU Q, HU Q, et al. Hierarchical graph transformer with adaptive node sampling[C]//Advances in Neural Information Processing Systems, 2022: 21171-21183.
[61] PARK J, YUN S, PARK H, et al. Deformable graph transformer[J]. arXiv:2206.14337, 2022.
[62] WU Q, ZHAO W, LI Z, et al. NodeFormer: a scalable graph structure learning transformer for node classi-fication[C]//Advances in Neural Information Processing Systems, 2022: 27387-27401.
[63] WU Q, YANG C, ZHAO W, et al. DIFFormer: scalable (graph) transformers induced by energy constrained diffusion[J]. arXiv:2301.09474, 2023.
[64] YUN S, JEONG M, YOO S, et al. Graph transformer networks: learning meta-path graphs to improve GNNs[J]. Neural Networks, 2022, 153: 104-119.
[65] MüLLER L, GALKIN M, MORRIS C, et al. Attending to graph transformers[J]. arXiv:2302.04181, 2023.
[66] FUCHS F, WORRALL D, FISCHER V, et al. SE(3)- Transformers: 3D roto-translation equivariant attention networks[C]//Advances in Neural Information Processing Systems, 2020: 1970-1981.
[67] TH?LKE P, DE FABRITIIS G. TorchMD-Net: equivariant transformers for neural network based molecular potentials[J]. arXiv:2202.02541, 2022.
[68] SHI Y, ZHENG S, KE G, et al. Benchmarking graphormer on large-scale molecular modeling datasets[J]. arXiv:2203. 04810, 2022.
[69] LUO S, CHEN T, XU Y, et al. One transformer can understand both 2D & 3D molecular data[J]. arXiv:2210.01765, 2022.
[70] MASTERS D, DEAN J, KLASER K, et al. GPS++: an optimised hybrid MPNN/transformer for molecular property prediction[J]. arXiv:2212.02229, 2022.
[71] DING K, LIANG A J, PEROZZI B, et al. HyperFormer: learning expressive sparse feature representations via hypergraph transformer[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023: 2062-2066.
[72] ZHANG H, LIU X, ZHANG J. HEGEL: hypergraph transformer for long document summarization[J]. arXiv:2210. 04126, 2022.
[73] LI Y, LIANG S, JIANG Y. Path reliability-based graph attention networks[J]. Neural Networks, 2023, 159: 153-160.
[74] BOSE K, DAS S. HyPE-GT: where graph transformers meet hyperbolic positional encodings[J]. arXiv:2312.06576, 2023. |