[1] TAMA?AUSKAIT? G, GROTH P. Defining a knowledge graph development process through a systematic review[J]. ACM Transactions on Software Engineering and Methodology, 2023, 32(1): 1-40.
[2] PELLISSIER T T, WEIKUM G, SUCHANEK F. YAGO 4: a reasonable knowledge base[C]//Proceedings of the 17th International Conference on European Semantic Web Conference, 2020: 583-596.
[3] ALMOUSA M, BENLAMRI R, KHOURY R. A novel word sense disambiguation approach using WordNet knowledge graph[J]. Computer Speech & Language, 2022, 74: 101337.
[4] SINGH K, LYTRA I, RADHAKRISHNA A S, et al. No one is perfect: analysing the performance of question answering components over the DBpedia knowledge graph[J]. Journal of Web Semantics, 2020, 65: 100594.
[5] ARNAOUT H, RAZNIEWSKI S, WEIKUM G, et al. Negative knowledge for open-world wikidata[C]//Proceedings of the Web Conference. New York: ACM, 2021: 544-551.
[6] ISSA S, ADEKUNLE O, HAMDI F, et al. Knowledge graph completeness: a systematic literature review[J]. IEEE Access, 2021, 9: 31322-31339.
[7] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42.
ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42.
[8] 于梦波, 杜建强, 罗计根, 等. 基于知识表示学习的知识图谱补全研究进展[J]. 计算机工程与应用, 2023, 59(18): 59-73.
YU M B, DU J Q, LUO J G, et al. Research progress of knowledge graph completion based on knowledge representation learning[J]. Computer Engineering and Applications, 2023, 59(18): 59-73.
[9] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[10] YAO L, MAO C S, LUO Y. KG-BERT: BERT for knowledge graph completion[J]. arXiv:1909.03193, 2019.
[11] ZHANG Z Y, LIU X Q, ZHANG Y, et al. Pretrain-KGE: learning knowledge representation from pretrained language models[C]//Findings of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 259-266.
[12] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[13] CHURCH K W. Word2Vec[J]. Natural Language Engineering, 2017, 23(1): 155-162.
[14] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014: 1112 - 1119.
[15] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[16] SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019.
[17] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[18] TROUILLON T, WELBL J, RIEDEL S, et al. ComplEx embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080.
[19] TRAN H N, TAKASU A. Multi-partition embedding interaction with block term format for knowledge graph completion[J]. arXiv:2006.16365, 2020.
[20] TRAN H N, TAKASU A. MEIM: multi-partition embedding interaction beyond block term format for efficient and expressive link prediction[J]. arXiv:2209.15597, 2022.
[21] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer International Publishing, 2018: 593-607.
[22] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[J]. arXiv:1707. 01476, 2017.
[23] NGUYEN D Q, NGUYEN D Q, NGUYEN T D, et al. A convolutional neural network-based model for knowledge base completion and its application to search personalization[J]. Semantic Web, 2019, 10(5): 947-960.
[24] MOHAMED H A, PILUTTI D, JAMES S, et al. Locality-aware subgraphs for inductive link prediction in knowledge graphs[J]. Pattern Recognition Letters, 2023, 167: 90-97.
[25] KIM B, HONG T, KO Y, et al. Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 1737-1743.
[26] CHEN S X, LIU X D, GAO J F, et al. HittER: hierarchical transformers for knowledge graph embeddings[J]. arXiv:2008.12813, 2020.
[27] BOLLACKER K, EVANS C, PARITOSH P K, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data, 2008: 1247-1280.
[28] ABBOUD R, CEYLAN I, LUKASIEWICZ T, et al. BoxE: a box embedding model for knowledge base completion[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 9649-9661.
[29] WANG Y C, GE X O, WANG B, et al. GreenKGC: a lightweight knowledge graph completion method[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 10596-10613.
[30] LUO Y, YANG C M, LI B, et al. CP tensor factorization for knowledge graph completion[C]//Proceedings of the Knowledge Science, Engineering and Management. Cham: Springer International Publishing, 2022: 240-254.
[31] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[J]. arXiv:1911.00219, 2019.
[32] XIE X, ZHANG N, LI Z, et al. From discrimination to generation: knowledge graph completion with generative transformer[J]. arXiv:2022.02113, 2020. |