[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] WANG K, LIU M Z. Object recognition at night scene based on DCGAN and faster R-CNN[J]. IEEE Access, 2020, 8: 193168-193182.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[4] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[5] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14):15-29.
[6] MA R, BAO K, YIN Y. Improved ship object detection in low-illumination environments using RetinaMFANet[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1996.
[7] WANG J, YANG P, LIU Y, et al. Research on improved YOLOv5 for low-light environment object detection[J]. Electronics, 2023, 12(14): 3089.
[8] CHEN Y, SUN X, XU L, et al. Application of YOLOv4 algorithm for foreign object detection on a belt conveyor in a low-illumination environment[J]. Sensors, 2022, 22(18): 6851.
[9] CUI Z, LI K, GU L, et al. You only need 90k parameters to adapt light: a light weight tran-sformer for image enhancement and exposure correction[C]//Proceedings of the 33rd British Machine Vision Conference 2022 (BMVC 2022), London, UK, November 21-24, 2022.
[10] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[J]. arXiv:1808.04560, 2018.
[11] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.
04159, 2020.
[12] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[13] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[15] LI Y, YAO T, PAN Y, et al. Contextual transformer networks for visual recognition[J]. arXiv:2107.12292, 2021.
[16] SASAGAWA Y, NAGAHARA H. YOLO in the dark-domain adaptation method for merging multiple models[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020: 345-359.
[17] NADA H, SINDAGI V A, ZHANG H, et al. Pushing the limits of unconstrained face detection: a challenge dataset and baseline results[C]//Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018: 1-10.
[18] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626. |