计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 150-155.DOI: 10.3778/j.issn.1002-8331.1910-0424
陈彬,张荣梅,张琦
CHEN Bin, ZHANG Rongmei, ZHANG Qi
摘要:
传统推荐算法大多都仅考虑用户-商品评级信息来进行推荐,这种忽略了用户属性和商品属性信息的推荐模型准确率不高。因子分解机可在数据稀疏情况下挖掘用户与商品的关联关系,交叉网络可挖掘属性特征与其高阶特征的线性组合关系,以及深度神经网络有效识别高阶非线性关联关系,基于三种模型的优势,提出了一种基于深度学习的混合推荐模型(Deep and Cross Factorization Machine,DCFM)。三部分并联组合,共享输入层,各部分结果线性组合后作为模型整体输出。通过在MovieLens电影数据集上仿真实验,并与因子分解机(FM)、深度因子分解机(DeepFM)、深度交叉网络(DCN)模型做比较,结果证明该模型在准确率、F1-Score和AUC值上均得到了提高和改善。