计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 156-161.DOI: 10.3778/j.issn.1002-8331.1910-0429
周舟,韩芳,王直杰
ZHOU Zhou, HAN Fang, WANG Zhijie
摘要:
基于计算机视觉的手语识别技术能为聋校双语教学带来很大的便利。近年来,随着深度学习技术的蓬勃发展,手语识别的准确率和速度有了极大的提高。与使用颜色标记和外界技术(如Kinect手心定位技术)的方法不同,提出一种改进的SSD(Single-Shot Multibox Detector)网络,对手势进行目标检测完成中国手语识别。针对手部小目标,将SE-Net嵌入SSD中的特征层进行通道权重分配,改进损失函数更好地应对正负样本不均衡问题,使用mixup进行数据增强,将手势识别结果在中国手语关键手势模板库中进行匹配,从而完成动态手语识别。实验证明,该算法在手语识别上具有较高的准确率和识别速度。