计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 228-236.DOI: 10.3778/j.issn.1002-8331.2001-0143
侯旋,薛飞,陈涛
HOU Xuan, XUE Fei, CHEN Tao
摘要:
研究了现阶段无人机雷达探测技术的难点与方法,分析了量子多模式识别网络模型与算法,根据Grover算法优化理论,提出了基于相位旋转的量子多模式识别算法(PRQMPRA)。优化算法避免了在带冗余项的量子多模式识别算法(RQMPRA)中两个相位旋转均为[π]会导致搜索成功概率降低的缺陷。利用三种数据集对误差反向传播算法(EBPA)、基于交叉熵函数的深层自编码器学习算法(CDAA)以及RQMPRA与PRQMPRA进行模式识别能力分析,结果表明在确定限定误差的情况下PRQMPRA具有更高的识别率与相对较快的运算速度。提出了一种基于量子多模式识别算法的雷达目标检测方法,通过模式分类的方法研究目标检测问题。利用上述四种算法进行无人机目标检测实验,研究结果表明PRQMPRA具有更高的检测精度,在低信噪比的情况下可保持较高的发现概率。