计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 222-227.DOI: 10.3778/j.issn.1002-8331.2001-0064
杨波,陶青川,董沛君
YANG Bo, TAO Qingchuan, DONG Peijun
摘要:
针对当前国内手术器械管理耗费人力,智能化程度低的问题,提出一种动态学习特征的改进Deeplab v3+网络模型语义分割算法。为了加强相关任务有效特征学习,在Deeplab v3+模型编码端嵌入注意力机制CBAM模块并通过密集深度分离卷积和扩张卷积提取图像高层特征;在解码端增加两路低层特征来源,保留了重要特征信息,提高了分割准确率。实验结果表明,改进后网络在手术器械数据集上MIoU、PA、Recall、[F]值分别为0.854、0.874、0.872和0.873。相较于其他语义分割网络,改进网络分割性能更优,有极大的工程实用价值。