[1] ZENG N, LI J L, ZHANG Y, et al. Scattered train bolt point cloud segmentation based on hierarchical multi-scale feature learning[J]. Sensors, 2023, 23(4): 2019.
[2] 卢海林. 基于2D-3D图像信息融合的列车车底中心鞘螺栓故障检测方法[D]. 北京: 北京交通大学, 2021.
LU H L. Fault detection method for bolts in center sheath of train bottom based on 2D-3D image information fusion[D]. Beijing: Beijing Jiaotong University, 2021.
[3] ZHANG H J, HE P, YANG X D. Fault detection of train center plate bolts loss using modified LBP and optimization algorithm[J]. The Open Automation and Control Systems Journal, 2015, 7(1): 1916-1921.
[4] LI C Q, WEI Z Z, XING J. Online inspection system for the automatic detection of bolt defects on a freight train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(4): 1213-1226.
[5] 王一, 马钲东, 董光林. 基于改进Faster RCNN的零件识别方法研究[J]. 应用光学, 2022, 43(1): 67-73.
WANG Y, MA Z D, DONG G L. Parts recognition method based on improved Faster RCNN[J]. Journal of Applied Optics, 2022, 43(1): 67-73.
[6] YANG Q, MA S, GUO D Q, et al. A small object detection method for oil leakage defects in substations based on improved faster-RCNN[J]. Sensors, 2023, 23(17): 7390.
[7] YU Y W, HAN X, DU L Q. Target part detection based on improved SSD algorithm[J]. Journal of Physics: Conference Series, 2020, 1486(3): 032024.
[8] 罗隆福, 叶威, 王健. 基于深度学习的高铁接触网顶紧螺栓的缺陷检测[J]. 铁道科学与工程学报, 2021, 18(3): 605-614.
LUO L F, YE W, WANG J. Defect detection of the puller bolt in high-speed railway catenary based on deep learning[J]. Journal of Railway Science and Engineering, 2021, 18(3): 605-614.
[9] MUSHTAQ F, RAMESH K, DESHMUKH S, et al. Nuts&bolts: YOLO-v5 and image processing based component identification system[J]. Engineering Applications of Artificial Intelligence, 2023, 118: 105665.
[10] WANG D Y, ZHANG M X, SHENG D J, et al. Bolt positioning detection based on improved YOLOv5 for bridge structural health monitoring[J]. Sensors, 2023, 23(1): 396.
[11] 李昂, 孙士杰, 张朝阳, 等. 改进YOLOv5s的轨道障碍物检测模型轻量化研究[J]. 计算机工程与应用, 2023, 59(4): 197-207.
LI A, SUN S J, ZHANG Z Y, et al. Research on lightweight of improved YOLOv5s track obstacle detection model[J]. Computer Engineering and Applications, 2023, 59(4): 197-207.
[12] BRINTHA K, JOSEPH JAWHAR S. FOD-YOLO NET: fasteners fault and object detection in railway tracks using deep YOLO network1[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(4): 8123-8137.
[13] 邹一鸣, 李鹏, 林群煦, 等. 基于改进YOLOv5算法的地铁车辆转向架螺栓缺失检测[J]. 机械工程师, 2023(9): 50-54.
ZOU Y M, LI P, LIN Q X, et al. Detection of missing bolts in subway bogies based on improved YOLOv5 algorithm[J]. Mechanical Engineer, 2023(9): 50-54.
[14] 董华军, 韩华豫, 李籽骁, 等. 基于C3F-YOLOv5的轻量化列车车底螺栓检测方法研究[J]. 铁道科学与工程学报, 2024, 21(8): 3455-3468.
DONG H J, HAN H Y, LI Z X, et al. Research on underbody bolt detection method of lightweight train based on C3F-YOLOv5[J]. Journal of Railway Science and Engineering, 2024, 21(8): 3455-3468.
[15] LI Z X, LI J J, ZHANG C L, et al. Lightweight detection of train underframe bolts based on SFCA-YOLOv8s[J]. Machines, 2024, 12(10): 714.
[16] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[17] WANG D Y, ZHANG M X, SHENG D J, et al. Bolt positioning detection based on improved YOLOv5 for bridge structural health monitoring[J]. Sensors, 2023, 23(1): 396.
[18] 陈业泓, 周航, 陆鑫, 等. 基于SSD-YOLO的动车组制动盘螺栓故障检测算法[J]. 激光与光电子学进展, 2025, 62(8): 113-122.
CHEN Y H, ZHOU H, LU X, et al. Failure detection algorithm for electric multiple unit brake disc bolts based on SSD-YOLO[J]. Laser & Optoelectronics Progress, 2025, 62(8): 113-122.
[19] 张洪, 朱志伟, 胡天宇, 等. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 749-760.
ZHANG H, ZHU Z W, HU T Y, et al. Bridge bolt defect identification method based on improved YOLOv5s[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(3): 749-760.
[20] CAO G, TIAN H W, YU L F, et al. Fast contrast enhancement by adaptive pixel value stretching[J]. International Journal of Distributed Sensor Networks, 2018, 14(8): 1550147718793803.
[21] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[M]//Machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2023: 443-459.
[22] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16514-16524.
[23] MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[24] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024. |