[1] XU L P, WU Z Z, WANG Y H, et al. Compressing vehicle trajectory data using hybrid coding with kinematic motion prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5389-5401.
[2] 王旭. 一种基于YOLOv5改进的雨天环境交通标志识别检测[J]. 现代信息科技, 2022, 6(20): 71-75.
WANG X. An improved traffic sign recognition and detection on rainy environment based on YOLOv5[J]. Modern Information Technology, 2022, 6(20): 71-75.
[3] 吴一全, 刘莉. 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40(12): 92-109.
WU Y Q, LIU L. Research and development of the vision-based lane detection methods[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 92-109.
[4] BAGHDASSARIAN C, LANGE H, SAHLI H, et al. Recognition of arrows in the environment of road markings[C]//Proceedings of the Intelligent Vehicles ’94 Symposium. Piscataway: IEEE, 1994: 219-224.
[5] HE U, CHEN H, PAN I, et al. Using edit distance and junction feature to detect and recognize arrow road marking[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2014: 2317-2323.
[6] WU T, RANGANATHAN A. A practical system for road marking detection and recognition[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2012: 25-30.
[7] 李守彪, 武志斐. 基于多尺寸分解卷积的车道线检测[J]. 汽车技术, 2022(8): 32-37.
LI S B, WU Z F. Lane detection based on multi-size factorized convolution[J]. Automobile Technology, 2022(8): 32-37.
[8] 丁志江, 李丹, 马志程, 等. 基于Transformer的车道线分割算法研究[J]. 电子测量与仪器学报, 2022, 36(10): 227-234.
DING Z J, LI D, MA Z C, et al. Research on transformer-based lane segmentation algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(10): 227-234.
[9] HOANG T M, NGUYEN P H, TRUONG N Q, et al. Deep RetinaNet-based detection and classification of road markings by visible light camera sensors[J]. Sensors (Basel), 2019, 19(2): 281.
[10] REBUT J, BENSRHAIR A, TOULMINET G. Image segmentation and pattern recognition for road marking analysis[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Piscataway: IEEE, 2004,1: 727-732.
[11] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2961-2969.
[12]沙世涛. 高速公路交通安全设施养护管理对策[J]. 建筑与预算, 2021(8): 95-97.
SHA S T. Maintenance management strategies for traffic safety facilities on highways[J]. Construction and Budget, 2021 (8): 95-97.
[13] 薛玉利. 雾霾天气情况下的交通标志检测[J]. 交通运输系统工程与信息, 2016, 16(4): 88-94.
XUE Y L. Traffic sign detection under fog and haze weather[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 88-94.
[14] JAYASINGHE O, HEMACHANDRA S, ANHETTIGAMA D, et al. CeyMo: see more on roads-a novel benchmark dataset for road marking detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 3381-3390.
[15] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1): 157-173.
[16] MASCARENHAS S, AGARWAL M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification[C]//Proceedings of the International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications. Piscataway: IEEE, 2021: 96-99.
[17] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[18] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[19] HANSEN N, AUGER A, BROCKHOFF D, et al. COCO: performance assessment[J]. arXiv:1605.03560, 2016.
[20] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946, 2019.
[21] ZHOU T Y, ZHAO Y, WU J. ResNeXt and Res2Net structures for speaker verification[C]//Proceedings of the IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2021: 301-307.
[22] SU K Q, YAN W Q, WEI X, et al. Stereo VoVNet-CNN for 3D object detection[J]. Multimedia Tools and Applications, 2022, 81(25): 35803-35813.
[23] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. |