[1] WU D, LIU Y, ZHOU Y, et al. Analysis on on-site asphalt pavement quality inspection technology in highway engineering[J]. Journal of Architectural Research and Development, 2023, 7(2): 22-26.
[2] 朱彦, 张月霞. SEP-YOLO: 基于YOLOv8改进的道路目标检测算法[J/OL]. 计算机应用与软件: 1-8[2024-09-29]. http://kns.cnki.net/kcms/detail/31.1260.tp.20240829.1140.002.hml.
ZHU Y, ZHANG Y X. SEP-YOLO: road object detection algorithm improved based on YOLOv8[J/OL]. Computer Applications and Software: 1-8[2024-09-29]. http://kns.cnki. net/kcms/detail/31.1260.tp.20240829.1140.002.html.
[3] AGRAWAL P, GIRSHICK R, MALIK J. Analyzing the performance of multilayer neural networks for object recognition[C]//Proceedings of the 13th European Conference on Computer Vision, 2014: 329-344.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[11] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[12] LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017.
[13] SERMANET P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition localization and detection using convolutional networks[J]. arXiv:1312.6229, 2013.
[14] WANG B, WANG J, XU X, et al. Gas mask wearing detection based on faster R-CNN[J]. Journal of Ambient Intelligence and Smart Environments, 2023 , 16(1): 57-71.
[15] REIS H C, TURK V, KARACUR S, et al. Integration of a CNN-based model and ensemble learning for detecting post-earthquake road cracks with deep features[J]. Structures, 2024, 62: 106179.
[16] Al-ADWAN A, ALAZZAM H, AL-ANBAKI N, et al. Detection of deepfake media using a hybrid CNN-RNN model and particle swarm optimization (PSO) algorithm[J]. Computers, 2024, 13(4): 99.
[17] HAO M, SUN Q, XUAN C, et al. Lightweight small-tailed han sheep facial recognition based on improved SSD algorithm[J]. Agriculture, 2024, 14(3): 468.
[18] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[19] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J , SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[20] 姜贸翔, 司占军, 王晓喆. 改进RT-DETR的无人机图像目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 98-108.
JIANG M X, SI Z J, WANG X Z. Improved target detection algorithm for UAV images with RT-DETR[J]. Computer Engineering and Applications, 2025, 61(1): 98-108.
[21] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60: 91-110.
[22] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 84-95.
LI J Y, LIU Q K, FU Y. Infrared small object detection based on attention mechanism[J]. Acta Aeronautica ET Astronautica Sinica, 2024, 45(14): 84-95.
[23] 任安虎, 李宇飞, 陈洋. 改进YOLOv8的高速公路交通异常事件检测[J]. 激光杂志, 2025, 46(1): 84-90.
REN A H , LI Y F, CHEN Y . Improved detection of unusual highway traffic events for YOLOv8[J]. Laser Journal, 2025, 46(1): 84-90.
[24] YANG M, THUNG G. Classification of trash for recyclability status[R]. CS229 Project Report, 2016.
[25] ARYA D, MAEDA H, GHOSH S K, et al. Crowdsensing-based road damage detection challenge (CRDDC-2022)[C]//Proceedings of the IEEE International Conference on Big Data, 2022: 6378-6386.
[26] YU F. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[27] VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the International Conference on Advances in Data Engineering and Intelligent Computing Systems, 2024: 1-6.
[28] 李丹阳, 刘卫光, 强赞霞, 等. 基于YOLOv4改进的交通标志检测算法[J]. 计算机应用与软件, 2024, 41(11): 327-334.
LI D Y , LIU W G , QIANG Z x, et al. An improved traffic sign detection algorithm based on YOLOv4[J]. Computer Applications and Software, 2024, 41(11): 327-334.
[29] 高敏, 李元. 基于YOLOv7-CA-BiFPN的路面缺陷检测[J]. 计算机测量与控制, 2024, 32(9): 9-14.
GAO M, LI Y. Road surface pothole detection based on YOLOv7-CA-BiFPN[J]. Computer Measurement & Control, 2024, 32(9): 9-14.
[30] GRAVES A. Long short-term memory[J]. arXiv:1308.0850, 2013.
[31] 高瑞, 熊彦平, 魏辰峰, 等. 基于三重注意力的轨道交通场景多任务感知算法[J]. 控制与信息技术, 2024(5): 47-56.
GAO R , XIONG Y P, WEI C F, et al. Multi-task perception algorithm for rail transit scenarios based on triplet attention[J]. Control and Information Technology, 2024(5): 47-56.
[32] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[33] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[34] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. arXiv:2006.04388, 2020.
[35] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[36] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[37] WANG H, WANG L, CHEN H, et al. Waste-YOLO: towards high accuracy real-time abnormal waste detection in waste-to-energy power plant for production safety[J]. Measurement Science and Technology, 2023, 35(1): 016001.
[38] 古佳欣, 陈高华, 张春美. YOLOv8-DEL: 基于改进YOLOv8n的实时车辆检测算法研究[J]. 计算机工程与应用, 2025, 61(1): 142-152.
GU J X, CHEN G H , ZHANG C M. YOLOv8-DEL: research on real-time vehicle detection algorithm based on improved YOLOv8n[J]. Computer Engineering and Applications, 2025, 61(1): 142-152. |