[1] 何道敬, 杜晓, 乔银荣, 等. 无人机信息安全研究综述[J]. 计算机学报, 2019, 42(5): 1076-1094.
HE D J, DU X, QIAO Y R, et al. A survey on cyber security of unmanned aerial vehicles[J]. Chinese Journal of Computers, 2019, 42(5): 1076-1094.
[2] KRATKY M, MINARIK V. The non-destructive methods of fight against UAVs[C]//Proceedingds of the 2017 International Conference on Military Technologies (ICMT), Brno, May 31- Jun 31, 2017. Piscataway, N J: IEEE, 2017: 690-694.
[3] MUJEEB S, CHOWDHARY S K, SRIVASTAVA A, et al. Unmanned aerial vehicle attack detection using snort[C]// International Conference on Innovation in Computer and Information Science, 2022: 18-24.
[4] XING R, SU Z, LUAN T H, et al. UAVs-aided delay-tolerant blockchain secure offline transactions in post-disaster vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 12030-12043.
[5] SEDJELMACI H, SENOUCI S M. Cyber security methods for aerial vehicle networks: taxonomy, challenges and solution[J]. The Journal of Supercomputing, 2018, 74(10): 4928-4944.
[6] YANG H, ZHOU Q, YAO M, et al. Practical and compatible cryptographic solution to ADS-B security[J]. IEEE Internet of Things Journal, 2019, 6(2): 3322-3334.
[7] SCHILLER N, CHLOSTA M, SCHLOEGEL M, et al. Drone security and the mysterious case of DJI’s DroneID[C]//Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, Mar 1-3, 2023. New York, N Y: ACM, 2023.
[8] 邹权臣, 张涛, 吴润浦, 等. 从自动化到智能化: 软件漏洞挖掘技术进展[J]. 清华大学学报 (自然科学版), 2018, 58(12): 1079-1094.
ZOU Q C, ZHANG T, WU R P, et al. From automation to intelligence: survey of research on vulnerability discovery techniques[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1079-1094.
[9] ZHANG H, ZHANG Z, TANG W. Improve peach: making network protocol fuzz testing more precisely[J]. Applied Mechanics and Materials, 2014, 551: 642-647.
[10] DOMIN K, SYMEONIDIS I, MARIN E. Security analysis of the drone communication protocol: fuzzing the MAVLink protocol[C]//Proceedings of the 37th Symposium on Information Theory in the Benelux, 2016: 198-204.
[11] 叶向豪. 基于模糊测试的无人机软件系统漏洞挖掘研究[D]. 西安: 西安电子科技大学, 2019.
YE X H. Research on UAV system security vulnerability discovering based on fuzzing[D]. Xi’an: Xidian University, 2019.
[12] RUDO D, ZENG D K. Consumer UAV cybersecurity vulnerability assessment using fuzzing tests[J]. arXiv:2008. 03621, 2020.
[13] KIM T, KIM C H, RHEE J, et al. RVFuzzer: finding input validation bugs in robotic vehicles through control-guided testing[C]//Proceedings of the 28th USENIX Security Symposium, California, Aug 14-16, 2019. Piscataway, N J: IEEE, 2019: 425-442.
[14] CASALS S G, OWEZARSKI P, DESCARGUES G. Generic and autonomous system for airborne networks cyber-threat detection[C]//Proceedings of the 2013 IEEE AIAA 32nd Digital Avionics Systems Conference (DASC), New York, Oct 5-10, 2013. Piscataway, N J: IEEE, 2013.
[15] B?TTINGER K, GODEFROID P, SINGH R. Deep reinforcement fuzzing[C]//Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), California, May 24, 2018. Piscataway, N J: IEEE, 2018: 116-122.
[16] KOUB?A A, ALLOUCH A, ALAJLAN M, et al. Micro air vehicle link (mavlink) in a nutshell: a survey[J]. IEEE Access, 2019, 7: 87658-87680.
[17] KIM H, OZMEN M O, BIANCHI A, et al. PGFUZZ: policy-guided fuzzing for robotic vehicles[C]//Proceedings of the Network and Distributed System Security Symposium (NDSS), California, Feb 21-24, 2021. New York, N Y: ACM, 2021.
[18] ESPEHOLT L, SOYER H, MUNOS R, et al. Impala: scalable distributed deep-RL with importance weighted actor-learner architectures[C]//Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, Jul 10-15, 2018: 1407-1416.
[19] LIN L J. Self-improving reactive agents based on reinforcement learning, planning and teaching[J]. Machine Learning, 1992, 8: 293-321.
[20] KIM S, KIM T. RoboFuzz: fuzzing robotic systems over robot operating system (ROS) for finding correctness bugs[C]//Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Singapore, Nov 14-18, 2022. New York, N Y: ACM, 2022: 447-458.
[21] CHOI H, KATE S, AAFER Y, et al. Cyber-physical inconsistency vulnerability identification for safety checks in robotic vehicles[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Nov 9-13, 2020: 263-278.
[22] HAN R, YANG C, MA S, et al. Control parameters considered harmful: detecting range specification bugs in drone configuration modules via learning-guided search[C]//Proceedings of the 44th International Conference on Software Engineering, Pennsylvania, May 21-29, 2022. New York, N Y: ACM, 2022: 462-473.
[23] GONG X, YU J, Lü S, et al. Actor-critic with familiarity-based trajectory experience replay[J]. Information Sciences, 2022, 582: 633-647.
[24] BANERJEE C, CHEN Z, NOMAN N. Improved soft actor-critic: mixing prioritized off-policy samples with on-policy experiences[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3121-3129. |