[1] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 10(1): 1-20.
[2] 石敏, 乔昆磊, 王素琴, 等. 基于语义分割的密封圈缺陷检测方法研究[J]. 高技术通讯, 2021, 31(12): 1239-1247.
SHI M, QIAO K L, WANG S Q, et al. Research on seal ring defect detection method based on semantic segmentation[J]. High Technology Communication, 2021, 31(12): 1239-1247.
[3] 郑希鹏. 基于机器视觉的O型密封圈质量检测方法研究[D]. 合肥: 合肥工业大学, 2021.
ZHENG X P. Research on the quality inspection method of O-ring based on machine vision[D]. Hefei: Hefei University of Technology, 2021.
[4] 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48.
[5] DIESING G. How AI and machine vision intersect[J]. Quaity, 2022, 61(2): 14.
[6] 陶晓天, 何博侠, 张鹏辉, 等. 基于深度学习的航天密封圈表面缺陷检测[J]. 仪器仪表学报, 2021, 42(1): 199-205.
TAO X T, HE B X, ZHANG P H, et al. Surface defect detection of aerospace sealing ring based on deep learning[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 199-205.
[7] WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 14408-14419.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 7464-7475.
[9] 范丽丽, 赵宏伟, 赵浩宇, 等. 深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28(5): 1152-1164.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[12] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[13] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[14] ZHOU J, ZHANG B, YUAN X, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics and Technology, 2023, 131: 104703.
[15] 朱文博, 夏林聪, 陈龙, 等. 基于改进YOLOv5的O型密封圈缺陷检测方法[J]. 上海理工大学学报, 2022, 44(5): 440-448.
ZHU W B, XIA L C, CHEN L, et al. Defect detection method of O?ring based on improved YOLOv5[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(5): 440-448.
[16] 胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437.
HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5[J]. Journal of Graphics, 2023, 44(3): 427-437.
[17] 王凯, 刘伟, 查长军. 基于机器视觉的O型密封圈外观缺陷检测[J]. 吉林大学学报 (信息科学版), 2023, 41(4): 717-725.
WANG K, LIU W, ZHA C J. Machine vision-based appearance defect detection of O-ring seals[J]. Journal of Jilin University (Information Science Edition), 2023, 41(4): 717-725.
[18] 侯春佳, 何博侠, 胡金松, 等. 微小型航天密封圈表面缺陷检测[J]. 光子学报, 2024, 53(3): 0312001.
HOU C J, HE B X, HU J S, et al. Surface defect detection of microminiature aerospace seals[J]. Acta Photinica Sinica, 2024, 53(3): 0312001.
[19] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[20] 刘芷汐, 周春桂, 崔俊杰, 等. 基于改进YOLOv5s轻量化模型的红外场景目标检测方法研究[J]. 兵器装备工程学报, 2024, 45(3): 323-330.
LIU Z X, ZHOU C G, CUI J J, et al. Research on infrared scene target detection method based on improved YOLOv5s lightweight model[J]. Journal of Ordnance Equipment Engineering, 2019, 45(3): 323-330.
[21] 张红民, 庄旭, 郑敬添, 等. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249. ZHANG H M, ZHUANG X, ZHENG J T, et al. Optimizing human abnormal behavior detection method of YOLO network[J]. Computer Engineering and Applications, 2023, 59 (7): 242-249.
[22] 高春艳, 秦燊, 李满宏, 等. 改进YOLOv7算法的钢材表面缺陷检测研究[J]. 计算机工程与应用, 2024, 60(7): 282-291.
GAO C Y, QIN S, LI M H, et al. Research on steel surface defect detection with improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291.
[23] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[24] YU J, ZHANG W. Face mask wearing detection algorithm based on improved YOLO-v4[J]. Sensors, 2021, 21(9): 3263.
[25] SONG Q, LI S, BAI Q, et al. Object detection method for grasping robot based on improved YOLOv5[J]. Micromachines, 2021, 12(11): 1273.
[26] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Press, 2023: 7464-7475. |