[1] 洪向共, 周世芬. 基于灰度共生矩阵和区域生长算法的红外光伏面板图像分割[J]. 科学技术与工程, 2018, 18(34): 92-97.
HONG X G, ZHOU S F. Infrared photoelectric panels image segmentation based on gray level co-occurrence matrix and region growing algorithm[J]. Science and Technology and Engineering, 2018, 18(34): 92-97.
[2] 刘铖铖, 刘立群, 焦秀华, 等. 改进canny算子的太阳能电池表面缺陷检测[J]. 太原科技大学学报, 2021, 42(4): 255-260.
LIU C C, LIU L Q, JIAO X H, et al. Surface defect detection of solar cells based on improved canny operator[J]. Journal of Taiyuan University of Science and Technology, 2021, 42(4): 255-260.
[3] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[4] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[5] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
[6] CHEN L C E, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the Computer Vision-ECCV 2018: 15th European Conference, 2018: 833-851.
[7] ZHANG X H, XU M, WANG S J, et al. Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine[J]. Earth System Science Data, 2022, 14(8): 3743-3755.
[8] JIE Y S, JI X H, YUE A Z, et al. Combined multi-layer feature fusion and edge detection method for distributed photovoltaic power station identification[J]. Energies, 2020, 13(24): 6742.
[9] SIZKOUHI A M M, AGHAEI M, ESMAILIFAR S M, et al. Automatic boundary extraction of large-scale photovoltaic plants using a fully convolutional network on aerial imagery[J]. IEEE Journal of Photovoltaics, 2020, 10(4): 1061-1067.
[10] PEREZ-GONZALEZ A, JARAMILLO-DUQUE A, CANO-QUINTERO J B. Automatic boundary extraction for photovoltaic plants using the deep learning u-net model[J]. Applied Sciences-Basel, 2021, 10(14): 1061-1067.
[11] GE F, WANG G Z, HE G J, et al. A hierarchical information extraction method for large-scale centralized photovoltaic power plants based on multi-source remote sensing images[J]. Remote Sensing, 2022, 14(17): 4211.
[12] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2018: 1451-1460.
[13] XU W J, ZHU Q. A semantic segmentation method with emphasis on the edges for automatic vessel wall analysis[J]. Applied Sciences-Basel, 2022, 12(14): 7012.
[14] WOO S H, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the Lecture Notes in Computer Science, 2018: 3-19.
[15] LI S F, LI B, LI J, et al. Semantic segmentation algorithm of rice small target based on deep learning[J]. Agriculture-Basel, 2022, 12(8): 1232.
[16] JIANG H, YAO L, LU N, et al. Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery[J]. Earth System Science Data, 2021, 13(11): 5389-5401. |