[1] 《矿井提升机故障处理和技术改造》编委会. 矿井提升机故障处理和技术改造[M]. 2版.北京: 机械工业出版社, 2013.
Fault treatment and technical transformation of mine hoist[M]. 2nd ed. Beijing: China Machine Press, 2013.
[2] LI J, JIANG S, LI M, et al. A fault diagnosis method of mine hoist disc brake system based on machine learning[J]. Applied Sciences, 2020, 10(5): 1768.
[3] 潘晓博, 葛鲲鹏, 董飞. 基于特征迁移学习的提升机轴承智能故障诊断[J]. 工矿自动化, 2022, 48(9): 1-7.
PAN X B, GE K P, DONG F. Intelligent fault diagnosis of hoist bearing based on feature transfer learning[J]. Journal of Mine Automation, 2022, 48(9): 1-7.
[4] 李娟莉, 赵旭荣, 孙梦祯. 矿井提升机主轴系统故障本体诊断方法[J]. 矿业研究与开发, 2020, 40(6): 144-147.
LI J L, ZHAO X R, SUN M Z. Fault ontology diagnosis method of spindle system of mine hoist[J]. Mining Research and Development, 2020, 40(6): 144-147.
[5] XIAO X, LI C, HUANG J, et al. Fault diagnosis of rolling bearing based on knowledge graph with data accumulation strategy[J]. IEEE Sensors Journal, 2022, 22(19): 18831-18840.
[6] LI Z, ZHAO Y, LI Y, et al. Fault localization based on knowledge graph in software-defined optical networks[J]. Journal of Lightwave Technology, 2021, 39(13): 4236-4246.
[7] LIANG K, ZHOU B, ZHANG Y, et al. PF2RM: a power fault retrieval and recommendation model based on knowledge graph[J]. Energies, 2022, 15(5): 1810.
[8] HAN H, WANG J, WANG X, et al. Construction and evolution of fault diagnosis knowledge graph in industrial process[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[9] PATIL N V, PATIL A S, PAWAR B V. HMM based named entity recognition for inflectional language[C]//Proceedings of the 2017 International Conference on Computer, Communications and Electronics, 2017: 565-572.
[10] LYU C, CHEN B, REN Y, et al. Long short-term memory RNN for biomedical named entity recognition[J]. BMC Bioinformatics, 2017, 18(1): 1-11.
[11] CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
[12] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J]. arXiv:1603.01360, 2016.
[13] DENG N, FU H, CHEN X. Named entity recognition of traditional Chinese medicine patents based on BiLSTM-CRF[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-12.
[14] LIANG C, YU Y, JIANG H, et al. Bond: bert-assisted open-domain named entity recognition with distant supervision[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 1054-1064.
[15] CHANG Y, KONG L, JIA K, et al. Chinese named entity recognition method based on BERT[C]//Proceedings of the 2021 IEEE International Conference on Data Science and Computer Application, 2021: 294-299.
[16] 龚乐君, 张知菲. 基于领域词典与CRF双层标注的中文电子病历实体识别[J]. 工程科学学报, 2020, 42(4): 469-475.
GONG L J, ZHANG Z F. Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF[J]. Chinese Journal of Engineering, 2020, 42(4): 469-475.
[17] 张泽锋, 毛存礼, 余正涛, 等. 融入领域术语词典的司法舆情敏感信息识别[J]. 中文信息学报, 2022, 36(9): 76-83.
ZHANG Z F, MAO C L, YU Z T, et al. Sensitive judicial public opinion information recognition with the domain terminology dictionary[J]. Journal of Chinese Information Processing, 2022, 36(9): 76-83.
[18] YE Z X, LING Z H. Distant supervision relation extraction with intra-bag and inter-bag attentions[J]. arXiv:1904.00143, 2019.
[19] 葛艳, 杜坤钰, 杜军威, 等. 基于混合神经网络的实体关系抽取方法研究[J]. 中文信息学报, 2021, 35(10): 81-89.
GE Y, DU K Y, DU J W, et al. Entity relation extraction based on hybrid neural network[J]. Journal of Chinese Information Processing, 2021, 35(10): 81-89.
[20] FENG J, HUANG M, ZHAO L, et al. Reinforcement learning for relation classification from noisy data[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 5779-5786.
[21] TAKANOBU R, ZHANG T, LIU J, et al. A hierarchical framework for relation extraction with reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 7072-7079.
[22] SHI P, LIN J. Simple BERT models for relation extraction and semantic role labeling[J]. arXiv:1904.05255, 2019.
[23] 牛强. 语义环境下的矿井提升机故障诊断研究[D]. 徐州: 中国矿业大学, 2010.
NIU Q. Research on mine hoist fault diagnosis in semantic environment[D]. Xuzhou: China University of Mining and Technology, 2010.
[24] CAI D, CHEN R, ZHOU K, et al. A bi-directional maximum matching method based on thesaurus for power outage address matching[C]//Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration, 2020: 705-710.
[25] ZHANG Z, HAN X, LIU Z, et al. ERNIE: enhanced language representation with informative entities[J]. arXiv:1905. 07129, 2019.
[26] CAI J, LI J, LI W, et al. Deeplearning model used in text classification[C]//Proceedings of the 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2018: 123-126.
[27] GUO B, ZHANG C, LIU J, et al. Improving text classification with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374. |