[1] 李亮. 基于Tesseract_OCR的驾驶证识别系统设计与实现[D]. 成都: 电子科技大学, 2018.
LI L. Design and implementation of driving license identification system based on Tesseract_OCR[D].Chengdu: University of Electronic Science and Technology of China, 2018.
[2] 王康维, 赵磊, 黄鑫炎, 等. 一种低亮度非均匀光照文档图片快速二值化方法[J]. 光电子·激光, 2020, 31(12):1333-1340.
WANG K W, ZHAO L, HUANG X Y, et al.A fast binarization method for dark and uneven illumination docement images[J].Journal of Optoelectronics·Laser, 2020, 31(12):1333-1340.
[3] 吴冰航. 基于机器视觉的工业OCR识别系统的设计与实现[D]. 成都: 电子科技大学, 2021.
WU B H. Design and implementation of industrial OCR recognition system based on machine vision[D]. Chengdu:University of Electronic Science and Technology of China, 2021.
[4] 王凌燕. 中文字符识别系统的研究与实现[J]. 吉林大学学报 (信息科学版), 2020, 38(2):199-205.
WANG L Y. Research and implement of Chinese OCR system[J]. Journal of Jilin University (Information Science Edition), 2020, 38(2):199-205.
[5] ZHAO L, JIA K. Application of CRNN based OCR in health records system[C]//Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing, 2018: 46-50.
[6] LEE C Y, OSINDERO S. Recursive recurrent nets with attention modeling for OCR in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2231-2239.
[7] WICK C, REUL C, PUPPE F. Calamari-a high-performance tensorflow-based deep learning package for optical character recognition[J]. arXiv:1807.02004, 2018.
[8] KOHúT J, HRADI? M. TS-Net: OCR trained to switch between text transcription styles[C]//International Conference on Document Analysis and Recognition. Cham: Springer, 2021: 478-493.
[9] LAY K K, CHO A. Myanmar named entity recognition with hidden Markov model[J]. Published in International Journal of Trend in Scientific Research and Development, 2019, 3(4): 1144-1147.
[10] LEE W J, KIM K, LEE E Y, et al. Conditional random fields for clinical named entity recognition: a comparative study using Korean clinical texts[J]. Computers in Biology and Medicine, 2018, 101:7-14.
[11] ARORA R, TSAI C T, TSERETELI K, et al. A semi-Markov structured support vector machine model for high-precision named entity recognition[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 5862-5866.
[12] ABD M T, MOHD M. A comparative study of word representation methods with conditional random fields and maximum entropy Markov for bio-named entity recognition[J]. Malaysian Journal of Computer Science, 2018, 31(5):15-30.
[13] JIA Y, XU X. Chinese named entity recognition based on CNN-BiLSTM-CRF[C]//2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), 2018.
[14] SONG Y, TIAN S, YU L. A method for identifying local drug names in Xinjiang based on BERT-BiLSTM-CRF[J]. Automatic Control and Computer Sciences, 2020, 54(3):179-190.
[15] 孙绍丹. 数字人文视域下历史报纸资源语义化知识组织研究[D]. 长春: 吉林大学, 2022.
SUN S D.Research on semantics knowledge organization of historical newspaper resources in digital humanities[D].Changchun: Jinlin University, 2022.
[16] BOROS E, HAMDI A, PONTES E L, et al. Alleviating digitization errors in named entity recognition for historical documents[C]//Proceedings of the 24th Conference on Computational Natural Language Learning, 2020.
[17] 肖连杰, 孟涛, 王伟, 等. 基于深度学习的情报分析方法识别研究*——以安全情报领域为例[J]. 数据分析与知识发现, 2019, 3(10): 20-28.
XIAO L J, MENG T, WANG W, et al.Entity recognition of intelligence method based on deep learning: taking area of security intelligence for example[J]. Data Analysis and Knowledge Discovery, 2019, 3(10): 20-28.
[18] ROUHOU A C, DHIAF M, KESSENTINI Y, et al. Transformer-based approach for joint handwriting and named entity recognition in historical document[J]. Pattern Recognition Letters, 2022, 155: 128-134.
[19] MILLER D, BOISEN S, SCHWARTZ R, et al. Named entity extraction from noisy input: speech and OCR[C]//Sixth Applied Natural Language Processing Conference, 2000: 316-324.
[20] AHONEN E, HYVONEN E. Publishing historical texts on the semantic web-a case study[C]//2009 IEEE International Conference on Semantic Computing, 2009: 167-173.
[21] MD D, CHOWDHURY M, UDAY S I, et al. Named entity recognition in Bengali text using merged hidden Markov model and rule base approach[C]//2019 7th International Conference on Smart Computing & Communications (ICSCC), 2019.
[22] LI Y, SHETTY P, LIU L, et al. BERTifying the hidden Markov model for multi-source weakly supervised named entity recognition[J]. arXiv:2105.12848, 2021.
[23] MAK R M S, BIJAKSANA M A, HUDA A F. Person entity recognition for the Indonesian Qur’an translation with the approach hidden Markov model-viterbi[J]. Procedia Computer Science, 2019, 157: 214-220.
[24] ABD M T, MOHD M. A comparative study of word representation methods with conditional random fields and maximum entropy Markov for bio-named entity recognition[J]. Malaysian Journal of Computer Science, 2018, 31(5):15-30.
[25] SANTOSO J, SETIAWAN E, YUNIARNO E, et al. Hybrid conditional random fields and K-means for named entity recognition on Indonesian news documents[J]. International Journal of Intelligent Engineering and Systems, 2020, 13(3):233-245.
[26] KONKOL M, KONOPíK M. Maximum entropy named entity recognition for Czech language[C]//14th International Conference on Text, Speech and Dialogue, Pilsen, Czech Republic, September 1-5, 2011. Berlin Heidelberg: Springer, 2011: 203-210.
[27] ZHAI Z, NGUYEN D Q, VERSPOOR K. Comparing CNN and LSTM character-level embeddings in BiLSTM-CRF models for chemical and disease named entity recognition[J].arXiv:1808.08450, 2018.
[28] GUI T, MA R, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.
[29] MA P, JIANG B, LU Z, et al. Cybersecurity named entity recognition using bidirectional long short-term memory with conditional random fields[J]. Tsinghua Science and Technology, 2021, 26(3):259-265.
[30] ZHU Q, LI X, CONESA A, et al. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text[J]. Bioinformatics, 2018, 34(9): 1547-1554.
[31] KONG J, ZHANG L, JIANG M, et al. Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition[J]. Journal of Biomedical Informatics, 2021, 116:103737.
[32] CHE C, ZHOU C, ZHAO H, et al. Fast and effective biomedical named entity recognition using temporal convolutional network with conditional random field[J]. Mathematical Biosciences and Engineering, 2020, 17(4):3553-3566.
[33] DAI Z, WANG X, NI P, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records[C]//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019.
[34] AGRAWAL A, TRIPATHI S, VARDHAN M, et al. BERT-based transfer-learning approach for nested named-entity recognition using joint labeling[J]. Applied Sciences, 2022, 12(3): 976.
[35] EMMERT-STREIB F. Comparison of text mining models for food and dietary constituent named-entity recognition[J].Machine Learning and Knowledge Extraction, 2022, 41(1): 254-275.
[36] HA H T, HORáK A. Information extraction from scanned invoice images using text analysis and layout features[J]. Signal Processing: Image Communication, 2022, 102: 116601.
[37] ABADIE N, CARLINET E, CHAZALON J, et al. A benchmark of named entity recognition approaches in historical documents application to 19th century French directories[C]//15th IAPR International Workshop on Document Analysis Systems, La Rochelle, France, May 22-25, 2022. Cham: Springer International Publishing, 2022: 445-460.
[38] DUTTA H, GUPTA A. PNRank: unsupervised ranking of person name entities from noisy OCR text[J]. Decision Support Systems, 2022, 152: 113662.
[39] HUYNH V N, HAMDI A, DOUCET A. When to use OCR post?correction for named entity recognition?[C]//International Conference on Asian Digital Libraries. Cham: Springer, 2020: 33-42. |