[1] 许海玲, 吴潇, 李晓东, 等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2): 350-362.
XU H L, WU X, LI X D, et al. Comparison study of internet recommendation system[J]. Journal of Software, 2009, 20(2): 350-362.
[2] 赵俊逸, 庄福振, 敖翔, 等. 协同过滤推荐系统综述[J]. 信息安全学报, 2021, 6(5): 17-34.
ZHAO J Y, ZHUANG F Z, AO X, et al. Survey of collaborative filtering recommender systems[J] Journal of Cyber Security, 2021, 6(5): 17-34.
[3] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[4] RENDLE S. Factorization machines[C]//2010 IEEE International Conference on Data Mining, 2010: 995-1000.
[5] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 173-182.
[6] GUO H F, TANG R M, YE Y M, et al. DeepFM: an end-to-end wide & deep learning framework for CTR prediction[J]. arXiv: 1804.04950, 2018.
[7] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
[8] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[9] ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 793-803.
[10] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 165-174.
[11] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 639-648.
[12] CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 27-34.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[14] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway networks[J]. arXiv:1505.00387, 2015.
[17] 郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5): 1292-1297.
GUO Y X, YANG W, LIU Q, et al. Survey of residual network[J] Application Research of Computers, 2020, 37(5): 1292-1297.
[18] KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering[J]. arXiv:2002.12312, 2020.
[19] LE NGUYEN HOAI N. Towards comprehensive approaches for the rating prediction phase in memory-based collaborative filtering recommender systems[J]. Information Sciences, 2022, 589: 878-910.
[20] RODRIGUES C M, RATHI S, PATIL G. An efficient system using item & user-based CF techniques to improve recommendation[C]//2016 2nd International Conference on Next Generation Computing Technologies (NGCT), 2016: 569-574.
[21] KIM E, KIM M, RYU J. Collaborative filtering based on neural networks using similarity[C]//Proceedings of the Second International Conference on Advances in Neural Networks-Volume Part III (ISNN’05). Berlin, Heidelberg: Springer, 2005: 355-360.
[22] GAO C, WANG X, HE X, et al. Graph neural networks for recommender system[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022: 1623-1625.
[23] WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys (CSUR), 2022, 55(5): 1-37.
[24] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural networks[J]. Chinese Journal of Computers, 2020, 43(5): 755-780
[25] ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6(1): 1-23.
[26] LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference, 2022: 2320-2329.
[27] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[28] PEI Y, HUANG T, VAN IPENBURG W, et al. ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks[J]. Machine Learning, 2022, 111: 519-541.
[29] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian per-sonalized ranking from implicit feedback[C]//The Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009: 452-461.
[30] YIN X, GOUDRIAAN J A N, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany, 2003, 91(3): 361-371.
[31] ZHAO W X, MU S, HOU Y, et al. Recbole: towards a unified, comprehensive and efficient framework for recommendation algorithms[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 4653-4664. |