[1] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York: JMLR. org, 2017: 933-941.
[2] ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing.[S.l.]: Asian Federation of Natural Language Processing, 2017: 253-263.
[3] MA Y, CHENG G Q, LIANG X X, et al. Heterogeneous graph neural networks based on meta-path[C]//Proceeding of 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2020), 2020: 95-98.
[4] YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]//The Thirty-Third AAAI Conference on Artificial Intelligence(AAAI-19), 2019: 7370-7377.
[5] CHEN J, HOU H, JI Y, et al. Graph convolutional networks with structural attention model for aspect based sentiment analysis[C]//International Joint Conference on Neural Networks, Budapest, Hungary, 2019: 1-7.
[6] WANG B X. Disconnected recurrent neural networks for text categorization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2311-2320.
[7] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186.
[8] SUN Y, WANG S H, LI Y K , et al. ERNIE2.0: a continual pretraining framework for language understanding[C]//Proceedings of AAAI Conference on Artificial Intelligence, New York, NY, USA, 2020: 8968-8975.
[9] WANG H B , HOU M H , LI F, et al. Chinese implicit sentiment analysis based on hierarchical knowledge enhancement and multi-pooling[J]. IEEE Access, 2020, 8: 126051-126065.
[10] ZHUANG Y, LIU Z , LIU T T, et al. Implicit sentiment analysis based on multi-feature neural network model[J]. Soft Computing, 2022, 26(2): 635-644.
[11] SUN Z Q, YU H K, SONG X D, et al. MobileBERT: a compact task-agnostic BERT for resource-limited devices[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 2158-2170.
[12] KNYAZEV B, GRAHAM W T, MOHAMED R A. Understanding attention and generalization in graph neural networks[C]//33rd Conference on Neural Information Processing Systems(NeurIPS 2019), Vancouver, Canada, 2019.
[13] XIANG C L, REN Y F , JI D H. Identifying implicit polarity of events by using an attention-based neural network model[J]. IEEE Access, 2019, 7: 133170-133177.
[14] 赵容梅, 熊熙, 琚生根, 等. 基于混合神经网络的中文隐式情感分析[J]. 四川大学学报(自然科学版), 2020, 57(2): 264-270.
ZHAO R M , XIONG X, JU S G , et al. Implicit sentiment analysis for Chinese texts based on a hybird netural netork[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(2): 264-270.
[15] HE R, LEE W S, NG H T, et al. An unsupervised neural attention model for aspect extraction[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics ( Volume 1: Long Papers), 2017: 388-397.
[16] LIAO J , WANG S G , LI D Y. Identification of fact-implied implicit sentiment based on multi-level semantic fused representation[J]. Knowledge-Based Systems, 2019, 165(1): 197-207.
[17] 郭凤羽, 贺瑞芳, 党建武. 基于语境交互感知和模式筛选的隐式篇章关系识别[J]. 计算机学报, 2020, 43(5): 901-915.
GUO F Y , HE R F , DANG J W. Implicit discourse relation recognition based on contextual interaction perception and pattern filtering[J]. Chinese Journal of Computers, 2020, 43(5): 901-915.
[18] RANA T A, CHEAH Y N, RANA T. Multi-level knowledge-based approach for implicit spect identification[J]. Applied Intelligence, 2020, 50(12): 4616-4630.
[19] ZHANG Y R , XIE Y X , SUN J Y. Aspect level sentiment classification based on viewpoint information unit[C]//2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, 2021: 40-46.
[20] WEI J Y, LIAO J, YANG Z F , et al. BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis[J]. Neurocomputing, 2020, 383: 165-173.
[21] ZHAO N, GAO H, WEN X, et al. Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis[J]. IEEE Access, 2021, 9: 15561-15569.
[22] 袁景凌, 丁远远, 潘东行, 等. 基于时序和上下文特征的中文隐式情感分类模型[J]. 计算机应用, 2021, 41(10): 2820-2828.
YUAN J L , DING Y Y, PAN D X, et al. Chinese implicit sentiment classification model based on sequence and contextual features[J]. Computer Application, 2021, 41(10): 2820-2828.
[23] 黄山成, 韩东红, 乔百友, 等. 基于ERNIE2.0-BiLSTM-Attention的隐式情感分析方法[J]. 小型微型计算机系统, 2021, 42(12): 2485-2489.
HUANG S C , HAN D H , QIAO B Y , et al. Implicit sentiment analysis method based on ERNIE2.0-BiLSTM-Attention[J]. Journal of Chinese Computer Systems, 2021, 42(12): 2485-2489.
[24] 陈秋嫦, 赵晖, 左恩光, 等. 上下文感知的树递归神经网络下隐式情感分析[J]. 计算机工程与应用, 2022, 58(7): 167-175.
CHEN Q C , ZHAO H , ZUO E G , et al. Implicit sentiment analysis based on context aware tree recurrent neutral network[J]. Computer Engineering and Applications, 2022, 58(7): 167-175.
[25] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 1480-1489.
[26] 杨善良, 常征. 基于图注意力神经网络的中文隐式情感分析[J]. 计算机工程与应用, 2021, 57(24): 161-167.
YANG S L, CHANG Z. Chinese implicit sentiment analysis based on graph attention neural network[J]. Computer Engineering and Applications, 2021, 57(24): 161-167.
[27] 潘东行, 袁景凌, 李琳, 等. 一种融合上下文特征的中文隐式情感分类模型[J]. 计算机工程与科学, 2020, 42(2): 341-350.
PAN D X, YUAN J L, LI L, et al. A Chinese implicit sentiment classification model combining contextual features[J]. Computer Engineering and Science, 2020, 42(2): 341-350. |