[1] 杨泽青, 张明轩, 陈英姝, 等. 基于机器视觉的表面缺陷检测方法研究进展[J]. 现代制造工程, 2023(4): 143-156.
YANG Z Q, ZHANG M X, CHEN Y S, et. al. Review of surface defect detection methods based on machine vision[J]. Modern Manufacturing Engineering, 2023(4): 143-156.
[2] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 226-234.
YANG C L, ZHANG X Q. Survey of applications of material defect detection based on machine vision and deep learning[J]. Materials Reports, 2022, 36(16): 226-234.
[3] CZIMMERMANN T, CIUTI G, MILAZZO M, et al. Visual-based defect detection and classification approaches for industrial applications—a survey[J]. Sensors, 2020, 20(5): 1459.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21-37.
[7] 杨珂, 方诚, 段黎明. 基于深度学习模型融合的铸件缺陷自动检测[J]. 仪器仪表学报, 2021, 42(11): 150-159.
YANG K, FANG C, DUAN L M. Automatic detection of casting defects based on deep learning model fusion[J]. Chinese Journal of Instrument, 2021, 42(11): 150-159.
[8] SHI X, ZHOU S, TAI Y, et al. An improved Faster R-CNN for steel surface defect detection[C]//2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), 2022: 1-5.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[10] 窦智, 胡晨光, 李庆华, 等. 改进YOLOv7的小样本钢板表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(23): 283-292.
DOU Z, HU C G, LI Q H, et al. Improved YOLOv7 algorithm for small sample steel plate surface defect detection[J]. Computer Engineering and Applications, 2023, 59(23): 283-292.
[11] WANG Y, WANG H, XIN Z. Efficient detection model of steel strip surface defects based on YOLO-V7[J]. IEEE Access, 2022, 10: 133936-133944.
[12] YE G, QU J, TAO J, et al. Autonomous surface crack identification of concrete structures based on the YOLOv7 algorithm[J]. Journal of Building Engineering, 2023, 73: 106688.
[13] 翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J/OL]. 图学学报, 1-12[2023-12-01]. http://kns.cnki.net/kcms/detail/10.1034.T.20231101.1642.006.html.
ZHAI Y J, ZHAO X Y, WANG L Y, et. al. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J/OL]. Journal of Graphics: 1-12[2023-12-01]. http://kns.cnki.net/kcms/detail/10.1034.T.
20231101.1642.006.html.
[14] HUANG P, WANG S, CHEN J, et al. Lightweight model for pavement defect detection based on improved YOLOv7[J]. Sensors, 2023, 23(16): 7112.
[15] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[16] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
[17] CHEN Y, DAI X, LIU M, et al. Dynamic relu[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 351-367.
[18] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv:2110.13389, 2021.
[19] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[20] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. arXiv:2101.08158, 2021.
[21] 向宽, 李松松, 栾明慧, 等. 基于改进Faster RCNN的铝材表面缺陷检测方法[J]. 仪器仪表学报, 2021, 42(1): 191-198.
XIANG K, LI S S, LUAN M H, et al. Aluminum product surface defect detection method based on improved Faster RCNN[J]. Chinese Journal of Instrument, 2021, 42(1): 191-198.
[22] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021. |