[1] CAMPBELL M E, WHITACRE W W. Cooperative tracking using vision measurements on seascan UAVs[J]. IEEE Transactions on Control Systems Technology, 2007, 15(4): 613-626.
[2] 李东臣, 任俊杰, 张志文, 等. 基于高分辨率无人机影像的地震地表破裂半自动提取方法——以2021年M_S7.4青海玛多地震为例[J].地震地质, 2022, 44(6): 1484-1502.
LI D C, REN J J, ZHANG Z W, et al. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 M_S7.4 Maduo earthquake in Qinghai province as an example[J]. Seismology and Geology, 2022, 44(6): 1484-1502.
[3] FU Z, FENG P, NAQVI S M, et al. Robust particle PHD filter with sparse representation for multi-target tracking[C]//2016 IEEE International Conference on Digital Signal Processing(DSP), 2016: 281-285.
[4] WU Y, JIN J, XING X. Multi-target tracking method with flexibility of illumination change[C]//2016 IEEE International Conference on Consumer Electronics-China (ICCE-China), 2016: 1-6.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] GIRSHICK R. Fast R- CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] REN S, HE K, GIRSHICK R, et al. Faster R- CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 1137-1149.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[14] 刘芳, 韩笑.基于多尺度深度学习的自适应航拍目标检测[J]. 航空学报, 2022, 43(5): 471-482.
LIU F, HAN X. Adaptive aerial object detection based on multi-scale deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 471-482.
[15] 郭智超, 邓建球, 刘爱东, 等. 基于改进SSD的无人机航拍目标检测方法[J]. 兵器装备工程学报, 2021, 42(5): 184-190.
GUO Z C, DENG J Q, LIU A D, et al. UAV aerial target detection method based on improved SSD[J]. Journal of Ordnance Equipment Engineering, 2021, 42(5): 184-190.
[16] 吕晓君, 向伟, 刘云鹏. 基于强化底层特征的无人机航拍图像小目标检测算法[J]. 计算机应用研究, 2021, 38(5): 1567-1571.
LV X J, XIANG W, LIU Y P. Small object detection algorithm on UAV aerial images based on enhanced lower feature[J]. Application Research of Computers, 2021, 38(5): 1567-1571.
[17] 蒲良, 张学军. 基于深度学习的无人机视觉目标检测与跟踪[J]. 北京航空航天大学学报, 2022, 48(5): 872-880.
PU L, ZHANG X J. Deep learning based UAV vision object detection and tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 872-880.
[18] 戚玲珑, 高建瓴.基于改进YOLOv7的小目标检测[J].计算机工程, 2023, 49(1): 41-48.
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48.
[19] 余俊宇, 刘孙俊, 许桃.融合注意力机制的YOLOv7遥感小目标检测算法研究[J].计算机工程与应用, 2023, 59(20): 167-175.
YU J Y, LIU S J, XU T. Research on YOLOv7 remote sensing small target detection algorithm integrating attention mechanism[J]. Computer Engineering and Applications, 2023, 59(20): 167-175.
[20] 刘浩翰, 樊一鸣, 贺怀清, 等.改进YOLOv7-tiny的目标检测轻量化模型[J].计算机工程与应用,2023,59(14): 166-175.
LIU H H, FAN Y M, HE H Q, et al. Improved YOLOv7-tiny’s object detection lightweight model[J]. Computer Engineering and Applications, 2023, 59(14): 166-175.
[21] 齐向明, 董旭.改进Yolov7-tiny的钢材表面缺陷检测算法[J].计算机工程与应用, 2023, 59(12): 176-183.
QI X M, DONG X. Improved Yolov7-tiny algorithm for steel surface defect detection[J]. Computer Engineering and Applications, 2023, 59(12): 176-183.
[22] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[23] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[24] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J]. arXiv:1709.01507, 2017.
[25] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020.
[26] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel “squeeze&excitation” in fully convolutional networks[C]//International Conference on Medical Image Computing and Computerassisted Intervention. Cham: Springer, 2018: 421-429.
[27] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[28] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[29] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 1.
[30] YU W P, YANG T J N, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3258-3267.
[31] 刘展威, 陈慈发, 董方敏.基于YOLOv5s的航拍小目标检测改进算法研究[J/OL].无线电工程: 1-10[2023-09-10].http://kns.cnki.net/kcms/detail/13.1097.TN.20230411.1645.
026.html.
LIU Z W, CHEN C F, DONG F M. Improved aerial small object detection algorithm based on YOLOv5s[J/OL]. Radio Engineering: 1-10[2023-09-10]. http://kns.cnki.net/kcms/detail/13.1097.TN.20230411.1645.026.html.
[32] ZHAO H P, ZHOU Y, ZHANG L, et al. Mixed YOLOv3-LITE: a lightweight real-time object detection method[J]. Sensors, 2020, 20(7): 1861-1878.
[33] 陈卫彪, 贾小军, 朱响斌, 等.基于DSM-YOLO v5的无人机航拍图像目标检测[J].计算机工程与应用, 2023, 59(18): 226-233.
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLO v5[J]. Computer Engineering and Applications, 2023, 59(18): 226-233. |