[1] ZHAO K, ZHOU Y, CHEN X. A dense connection based SAR ship detection network[C]//2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020: 669-673.
[2] CHAI B, CHEN L, SHI H, et al. Marine ship detection method for SAR image based on improved Faster RCNN[C]//2021 SAR in Big Data Era (BIGSARDATA), 2021: 1-4.
[3] XU X, ZHANG X, ZHANG T. SAR ship detection using YOLOv5 algorithm with anchor boxes cluster[C]//2022 IEEE International Geoscience and Remote Sensing Symposium, 2022: 2139-2142.
[4] 王毓玮, 史国友, 林佳木. 基于改进Faster R-CNN的SAR舰船图像检测[J]. 船舶工程, 2021, 43(8): 29-33.
WANG Y W, SHI G Y, LIN J M. SAR ship image detection based on improved Faster R-CNN[J]. Ship Engineering, 2021, 43(8): 29-33.
[5] GUO Y, CHEN S, ZHAN R, et al. SAR ship detection based on YOLOv5 using CBAM and BiFPN[C]//2022 IEEE International Geoscience and Remote Sensing Symposium, 2022: 2147-2150.
[6] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[9] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2980-2988.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real?time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference Computer Vision, 2016: 21-37.
[13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[16] 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841-851.
ZHANG X L, ZHANG T W, SHI J, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841-851.
[17] 谭显东, 彭辉. 改进YOLOv5的SAR图像舰船目标检测[J]. 计算机工程与应用, 2022, 58(4): 247-254.
TAN X D, PENG H. Improved YOLOv5 ship target detection in SAR image[J]. Computer Engineering and Applications, 2022, 58(4): 247-254.
[18] 李磊, 徐国伟, 李文婧, 等. 基于深度学习的舰船目标检测算法与硬件加速[J]. 计算机应用, 2021, 41(S1): 162-166.
LI L, XU G W, LI W J, et al. Ship target detection algorithm based on deep learning and hardware acceleration[J]. Journal of Computer Applications, 2021, 41(S1): 162-166.
[19] 张天文, 张晓玲. 一种大场景SAR图像中舰船检测虚警抑制方法[J]. 现代雷达, 2022, 44(2): 1-8.
ZHANG T W, ZHANG X L. A false alarm suppression method for ship detection in large-scene SAR image[J]. Modern Radar, 2022, 44(2): 1-8.
[20] 周玉金, 谢宜壮, 乔婷婷, 等. 基于Jetson TX2的SAR船只目标检测实现[J]. 信号处理, 2022, 38(2): 426-431.
ZHOU Y J, XIE Y Z, QIAO T T, et al. Implementation of SAR ship target detection based on Jetson TX2[J]. Journal of Signal Processing, 2022, 38(2): 426-431.
[21] LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2755-2763.
[22] LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), 2017: 1-6. |