Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (8): 41-55.DOI: 10.3778/j.issn.1002-8331.2206-0022
• Research Hotspots and Reviews • Previous Articles Next Articles
SHI Lei, JI Qingyu, CHEN Qingwei, ZHAO Hengyi, ZHANG Junxing
Online:
2023-04-15
Published:
2023-04-15
石磊,籍庆余,陈清威,赵恒毅,张俊星
SHI Lei, JI Qingyu, CHEN Qingwei, ZHAO Hengyi, ZHANG Junxing. Review of Research on Application of Vision Transformer in Medical Image Analysis[J]. Computer Engineering and Applications, 2023, 59(8): 41-55.
石磊, 籍庆余, 陈清威, 赵恒毅, 张俊星. 视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2206-0022
[1] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [2] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [3] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning,2019:6105-6114. [4] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [5] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241. [6] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [7] WANG H,ZHU Y,GREEN B,et al.Axial-deeplab:stand-alone axial-attention for panoptic segmentation[C]//European Conference on Computer Vision.Cham:Springer,2020:108-126. [8] WANG Q,WU B,ZHU P,et al.Eca-net:efficient channel attention for deep convolutional neural networks[J].arXiv:1910.03151,2019. [9] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017. [10] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [11] TOUVRON H,CORD M,DOUZE M,et al.Training data-efficient image transformers & distillation through attention[C]//International Conference on Machine Learning,2021:10347-10357. [12] LIU Z,LIN Y,CAO Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:10012-10022. [13] YUAN L,CHEN Y,WANG T,et al.Tokens-to-token vit:training vision transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:558-567. [14] CHEN X,CAO Q,ZHONG Y,et al.DearKD:data-efficient early knowledge distillation for vision transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:12052-12062. [15] YUYAO G,YITING C,JIA W,et al.Vision transformer based on knowledge distillation in TCM image classification[C]//2022 IEEE 5th International Conference on Computer and Communication Engineering Technology(CCET),2022:120-125. [16] ZHANG L,WEN Y.A transformer-based framework for automatic COVID19 diagnosis in chest CTs[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:513-518. [17] HSU C C,CHEN G L,WU M H.Visual transformer with statistical test for covid-19 classification[J].arXiv:2107. 05334,2021. [18] LIN A,CHEN B,XU J,et al.DS-TransUNet:dual swin transformer u-net for medical image segmentation[J].arXiv:2106.06716,2021. [19] CAO H,WANG Y,CHEN J,et al.Swin-Unet:Unet-like pure transformer for medical image segmentation[J].arXiv:2105.05537,2021. [20] HATAMIZADEH A,NATH V,TANG Y,et al.Swin UNETR:swin transformers for semantic segmentation of brain tumors in MRI images[C]//International MICCAI Brainlesion Workshop.Cham:Springer,2022:272-284. [21] SIRINUKUNWATTANA K,PLUIM J P W,CHEN H,et al.Gland segmentation in colon histology images:the glas challenge contest[J].Medical Image Analysis,2017,35:489-502. [22] CODELLA N,ROTEMBERG V,TSCHANDL P,et al.Skin lesion analysis toward melanoma detection 2018:a challenge hosted by the international skin imaging collaboration(ISIC)[J].arXiv:1902.03368,2019. [23] FAN D P,JI G P,ZHOU T,et al.Pranet:parallel reverse attention network for polyp segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2020:263-273. [24] MENZE B H,JAKAB A,BAUER S,et al.The multimodal brain tumor image segmentation benchmark(BRATS)[J].IEEE Transactions on Medical Imaging,2014,34(10):1993-2024. [25] ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:a nested u-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support.Cham:Springer,2018:3-11. [26] HUANG H,LIN L,TONG R,et al.Unet 3+:a full-scale connected unet for medical image segmentation[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2020:1055-1059. [27] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:learning where to look for the pancreas[J].arXiv:1804.03999,2018. [28] ISENSEE F,PETERSEN J,KLEIN A,et al.nnU-Net:self-adapting framework for u-net-based medical image segmentation[J].arXiv:1809.10486,2018. [29] VALANARASU J M J,OZA P,HACIHALILOGLU I,et al.Medical transformer:gated axial-attention for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:36-46. [30] ZHANG Y,HIGASHITA R,FU H,et al.A multi-branch hybrid transformer network for corneal endothelial cell segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:99-108. [31] JI Y,ZHANG R,WANG H,et al.Multi-compound transformer for accurate biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:326-336. [32] WANG H,CAO P,WANG J,et al.UCTransNet:rethinking the skip connections in U-Net from a channel-wise perspective with transformer[J].arXiv:2109.04335,2021. [33] XU G,WU X,ZHANG X,et al.Levit-unet:make faster encoders with transformer for medical image segmentation[J].arXiv:2107.08623,2021. [34] GRAHAM B,EL-NOUBY A,TOUVRON H,et al.LeViT:a vision transformer in ConvNet’s clothing for faster inference[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:12259-12269. [35] CHEN J,LU Y,YU Q,et al.Transunet:transformers make strong encoders for medical image segmentation[J].arXiv:2102.04306,2021. [36] PETIT O,THOME N,RAMBOUR C,et al.U-net transformer:self and cross attention for medical image segmentation[C]//International Workshop on Machine Learning in Medical Imaging.Cham:Springer,2021:267-276. [37] CHANG Y,MENGHAN H,GUANGTAO Z,et al.Transclaw u-net:claw u-net with transformers for medical image segmentation[J].arXiv:2107.05188,2021. [38] GAO Y,ZHOU M,METAXAS D N.UTNet:a hybrid transformer architecture for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:61-71. [39] WANG H,XIE S,LIN L,et al.Mixed transformer u-net for medical image segmentation[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2022:2390-2394. [40] JI G P,CHOU Y C,FAN D P,et al.Progressively normalized self-attention network for video polyp segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:142-152. [41] LI S,SUI X,LUO X,et al.Medical image segmentation using squeeze-and-expansion transformers[J].arXiv:2105.09511,2021. [42] ZHANG Y,LIU H,HU Q.Transfuse:fusing transformers and CNNs for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:14-24. [43] CHEN B,LIU Y,ZHANG Z,et al.Transattunet:multi-level attention-guided u-net with transformer for medical image segmentation[J].arXiv:2107.05274,2021. [44] WANG J,WEI L,WANG L,et al.Boundary-aware transformers for skin lesion segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:206-216. [45] WU H,CHEN S,CHEN G,et al.FAT-Net:feature adaptive transformers for automated skin lesion segmentation[J].Medical Image Analysis,2022,76:102327. [46] HE X,TAN E L,BI H,et al.Fully transformer network for skin lesion analysis[J].Medical Image Analysis,2022:102357. [47] HATAMIZADEH A,TANG Y,NATH V,et al.Unetr:transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2022:574-584. [48] WANG W,CHEN C,DING M,et al.TransBTS:multimodal brain tumor segmentation using transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:109-119. [49] SHOME D,KAR T,MOHANTY S N,et al.Covid-transformer:interpretable covid-19 detection using vision transformer for healthcare[J].International Journal of Environmental Research and Public Health,2021,18(21):11086. [50] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:618-626. [51] GAO X,QIAN Y,GAO A.COVID-VIT:classification of COVID-19 from CT chest images based on vision transformer models[J].arXiv:2107.01682,2021. [52] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [53] PARK S,KIM G,OH Y,et al.Vision transformer for covid-19 cxr diagnosis using chest x-ray feature corpus[J].arXiv:2103.07055,2021. [54] CHEFER H,GUR S,WOLF L.Transformer interpretability beyond attention visualization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:782-791. [55] REY D,NEUH?USER M.Wilcoxon-signed-rank test[M]//International encyclopedia of statistical science.Berlin,Heidelberg:Springer,2011:1658-1659. [56] PARK S,KIM G,KIM J,et al.Federated split vision transformer for COVID-19CXR diagnosis using task-agnostic training[J].arXiv:2111.01338,2021. [57] PERERA S,ADHIKARI S,YILMAZ A.POCFormer:a lightweight transformer architecture for detection of COVID-19 using point of care ultrasound[C]//2021 IEEE International Conference on Image Processing(ICIP),2021:195-199. [58] WANG S,LI B Z,KHABSA M,et al.Linformer:self-attention with linear complexity[J].arXiv:2006.04768,2020. [59] SUN R,LI Y,ZHANG T,et al.Lesion-aware transformers for diabetic retinopathy grading[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10938-10947. [60] DECENCIèRE E,ZHANG X,CAZUGUEL G,et al.Feedback on a publicly distributed image database:the Messidor database[J].Image Analysis & Stereology,2014,33(3):231-234. [61] YANG H,CHEN J,XU M.Fundus disease image classification based on improved transformer[C]//2021 International Conference on Neuromorphic Computing(ICNC),2021:207-214. [62] YU S,MA K,BI Q,et al.Mil-vt:multiple instance learning enhanced vision transformer for fundus image classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:45-54. [63] PACHADE S,PORWAL P,THULKAR D,et al.Retinal fundus multi-disease image dataset(RFMiD):a dataset for multi-disease detection research[J].Data,2021,6(2):14. [64] GHEFLATI B,RIVAZ H.Vision transformers for classification of breast ultrasound images[C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC),2022:480-483. [65] ISLAM M N,HASAN M,HOSSAIN M,et al.Vision transformer and explainable transfer learning models for auto detection of kidney cyst,stone and tumor from CT-radiography[J].Scientific Reports,2022,12(1):1-14. [66] QU X,LU H,TANG W,et al.A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images[J].Medical Physics,2022,49(9):5787-5798. [67] KHAN A,LEE B.Gene transformer:transformers for the gene expression-based classification of lung cancer subtypes[J].arXiv:2108.11833,2021. [68] DUAN H,LIU Y,YAN H,et al.Fourier ViT:a multi-scale vision transformer with Fourier transform for histopathological image classification[C]//2022 7th International Conference on Automation,Control and Robotics Engineering(CACRE),2022:189-193. [69] ZHENG Y,GINDRA R H,GREEN E J,et al.A graph-transformer for whole slide image classification[J].arXiv:2205.09671,2022. [70] SHAO Z,BIAN H,CHEN Y,et al.Transmil:transformer based correlated multiple instance learning for whole slide image classification[C]//Advances in Neural Information Processing Systems,2021:2136-2147. [71] HE Z,LIN M,XU Z,et al.Deconv-transformer(DecT):a histopathological image classification model for breast cancer based on color deconvolution and transformer architecture[J].Information Sciences,2022,608:1093-1112. [72] CHEN J,HE Y,FREY E C,et al.Vit-v-net:vision transformer for unsupervised volumetric medical image registration[J].arXiv:2104.06468,2021. [73] CHEN J,FREY E C,HE Y,et al.Transmorph:transformer for unsupervised medical image registration[J].Medical Image Analysis,2022:102615. [74] ZHANG Y,PEI Y,ZHA H.Learning dual transformer network for diffeomorphic registration[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:129-138. [75] MARCUS D S,WANG T H,PARKER J,et al.Open access series of imaging studies(OASIS):cross-sectional MRI data in young,middle aged,nondemented,and demented older adults[J].Journal of Cognitive Neuroscience,2007,19(9):1498-1507. [76] MOK T C W,CHUNG A.Affine medical image registration with coarse-to-fine vision transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:20835-20844. [77] SHATTUCK D W,MIRZA M,ADISETIYO V,et al.Construction of a 3D probabilistic atlas of human cortical structures[J].Neuroimage,2008,39(3):1064-1080. [78] SHI J,HE Y,KONG Y,et al.XMorpher:full transformer for deformable medical image registration via cross attention[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:217-226. [79] ZHUANG X,SHEN J.Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI[J].Medical Image Analysis,2016,31:77-87. [80] XIE K,YANG Y,PAGNUCCO M,et al.Electron microscope image registration using Laplacian sharpening transformer U-Net[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:310-319. [81] CHEN J,LU D,ZHANG Y,et al.Deformer:towards displacement field learning for unsupervised medical image registration[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:141-151. [82] ZHU Y,LU S.Swin-VoxelMorph:a symmetric unsupervised learning model for deformable medical image regi- stration using swin transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2022:78-87. [83] MUELLER S G,WEINER M W,THAL L J,et al.Ways toward an early diagnosis in Alzheimer’s disease:the Alzheimer’s disease neuroimaging initiative(ADNI)[J].Alzheimer’s & Dementia,2005,1(1):55-66. [84] MAREK K,JENNINGS D,LASCH S,et al.The Parkinson progression marker initiative(PPMI)[J].Progress in Neurobiology,2011,95(4):629-635. [85] SHAMSHAD F,KHAN S,ZAMIR S W,et al.Transformers in medical imaging:a survey[J].arXiv:2201.09873,2022. [86] PARVAIZ A,KHALID M A,ZAFAR R,et al.Vision transformers in medical computer vision--a contemplative retrospection[J].arXiv:2203.15269,2022. [87] HE K,GAN C,LI Z,et al.Transformers in medical image analysis:a review[J].arXiv:2202.12165,2022. |
[1] | DENG Xiquan, CHEN Gang. ConvUCaps: Medical Image Segmentation Model Based on Convolutional Capsule Network [J]. Computer Engineering and Applications, 2024, 60(8): 258-266. |
[2] | HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei. Review of Unsupervised Domain Adaptation in Medical Image Segmentation [J]. Computer Engineering and Applications, 2024, 60(6): 10-26. |
[3] | NAN Yahui, HUA Qingyi. Local and Global View Occlusion Facial Expression Recognition Method [J]. Computer Engineering and Applications, 2024, 60(13): 180-189. |
[4] | CUI Ke, TIAN Qichuan, LIAN Lu. Review of Medical Image Segmentation Algorithms Based on U-Net Variants [J]. Computer Engineering and Applications, 2024, 60(11): 32-49. |
[5] | SUN Lulu, LIU Jianping, WANG Jian, XING Jialu, ZHANG Yue, WANG Chenyang. Survey of Vision Transformer in Fine-Grained Image Classification [J]. Computer Engineering and Applications, 2024, 60(10): 30-46. |
[6] | YANG He, BAI Zhengyao. CoT-TransUNet:Lightweight Context Transformer Medical Image Segmentation Network [J]. Computer Engineering and Applications, 2023, 59(3): 218-225. |
[7] | FENG Hongqi, HUANG Weikai, ZHANG Denghui. Facial Expression Recognition with Distinguishing Feature Filtering and ViT [J]. Computer Engineering and Applications, 2023, 59(22): 136-143. |
[8] | GAO Hui, DENG Miaolei, ZHAO Wenjun, CHEN Faquan, ZHANG Dexian. Application of Improved Transformer Based on Weakly Supervised in Crowd Localization [J]. Computer Engineering and Applications, 2023, 59(19): 92-98. |
[9] | WANG Guoli, SUN Yu, WEI Benzheng. Systematic Review on Graph Deep Learning in Medical Image Segmentation [J]. Computer Engineering and Applications, 2022, 58(12): 37-50. |
[10] | LU Zhenkun, LIU Sheng, ZHONG Le, LIU Shaohang, ZHANG Tian. Survey on Reaserch of Crowd Counting [J]. Computer Engineering and Applications, 2022, 58(11): 33-46. |
[11] | LI Jiasheng, GUO Shuxu, ZHANG Lei, ZHENG Shuang, ZHANG Huimao, QIU Yunhai, LI Xueyan. Research of Segmentation and Detection of Liver Metastases from CT Images Based on Deep Network [J]. Computer Engineering and Applications, 2021, 57(2): 191-197. |
[12] | GUO Yanfen, CUI Zhe, YANG Zhipeng, PENG Jing, HU Jinrong. Research Progress of Medical Image Registration Technology Based on Deep Learning [J]. Computer Engineering and Applications, 2021, 57(15): 1-8. |
[13] | SUN Lilei1,2, XU Yong3. Research on classification method of mammography based on deep learning [J]. Computer Engineering and Applications, 2018, 54(21): 13-19. |
[14] | GUO Shuxu1, MA Shuzhi1, LI Jing2, ZHANG Huimao2, SUN Changjian1, JIN Lanyi1, LIU Xiaoming1, LIU Qinan1, LI Xueyan1. Fully convolutional neural network for liver segmentation in CT image [J]. Computer Engineering and Applications, 2017, 53(18): 126-131. |
[15] | ZHANG Fei, FAN Hong. Research on medical image segmentation based on fuzzy C-means clustering algorithm [J]. Computer Engineering and Applications, 2014, 50(4): 144-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||