[1] ZOU Z,SHI Z,GUO Y,et al.Object detection in 20 years:a survey[J].arXiv:1905.05055,2019.
[2] 孙锐,王慧慧,叶子豪.融合深度感知特征与核极限学习机的行人检测[J].电子测量与仪器学报,2019,33(2):39-47.
SUN R,WANG H H,YE Z H.Pedestrian detection based on combining depth perception features with kernel extreme learning machine[J].Journal of Electronic Measurement and Instrumentation,2019,33(2):39-47.
[3] 周大可,宋荣,杨欣.结合双重注意力机制的遮挡感知行人检测[J].哈尔滨工业大学学报,2021,53(9):156-163.
ZHOU D K,SONG R,YANG X.Occlusion-aware pedestrian detection combined with dual attention mechanism[J].Journal of Harbin Institute of Technology,2021,53(9):156-163.
[4] 刘丽,郑洋,付冬梅.改进YOLOv3网络结构的遮挡行人检测算法[J].模式识别与人工智能,2020,33(6):568-574.
LIU L,ZHENG Y,FU D M.Occluded pedestrian detection algorithm based on improved network structure of YOLOv3[J].Pattern Recognition and Artificial Intelligence,2020,33(6):568-574.
[5] CHU X,ZHENG A,ZHANG X,et al.Detection in crowded scenes:one proposal,multiple predictions[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12214-12223.
[6] LIN B,LIN K,LIN C,et al.Computation offloading strategy based on deep reinforcement learning for connected and autonomous vehicle in vehicular edge computing[J].Journal of Cloud Computing,2021,10(1):1-17.
[7] WU Y,CHEN Y,YUAN L,et al.Rethinking classification and localization for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10186-10195.
[8] HSU S C,HUANG C L,CHUANG C H.Vehicle detection using simplified fast R-CNN[C]//2018 International Workshop on Advanced Image Technology,2018:1-3.
[9] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[10] ZHANG Z,HE T,ZHANG H,et al.Bag of freebies for training object detection neural networks[J].arXiv:1902.
04103,2019.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference on Computer Vision.Cham:Springer,2016:21-37.
[12] ZHANG J,HUANG M,JIN X,et al.A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J].Algorithms,2017,10(4):127.
[13] 宋艳艳,谭励,马子豪,等.改进YOLOV3算法的视频目标检测[J].计算机科学与探索,2021,15(1):163-172.
SONG Y Y,TAN L,MA Z H,et al.Video target detection based on improved YOLOV3 algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):163-172.
[14] 郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36.
ZHENG Y P,LI G Y,LI Y.Survey of application of deep learning in image recognition[J].Computer Engineering and Applications,2019,55(12):20-36.
[15] 董小伟,韩悦,张正,等.基于多尺度加权特征融合网络的地铁行人目标检测算法[J].电子与信息学报,2021,43(7):2113-2120.
DONG X W,HAN Y,ZHANG Z,et al.Metro pedestrian target detection algorithm based on multi-scale weighted feature fusion network[J].Journal of Electronics and Information,2021,43(7):2113-2120.
[16] GHIASI G,LIN T Y,LE Q V.NAS-FPN:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045.
[17] 帅泽群,李军.基于深度学习的目标检测研究[J].汽车工程师,2021(5):11-14.
SHUAI Z Q,LI J.Research on object detection based on deep learning[J].Automotive Engineer,2021(5):11-14.
[18] HAN K,WANG Y,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
[19] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[20] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision,2018:3-19.
[21] 陈维婧,周萍,杨海燕,等.通道-空间联合注意力机制的显著性检测模型[J].计算机工程与应用,2021,57(19):214-219.
CHEN W J,ZHOU P,YANG H Y,et al.Salient detection model based on channel-spatial joint attention mechanism[J].Computer Engineering and Application,2021,57(19):214-219.
[22] 宋中山,梁家锐,郑禄,等.基于双向门控尺度特征融合的遥感场景分类[J].计算机应用,2021,41(9):2726-2735.
SONG Z S,LIANG J R,ZHENG L,et al.Remote sensing scene classification based on bidirectional gated scale feature fusion[J].Journal of Computer Application,2021,41(9):2726-2735.
[23] WANG Q L,WU B G,ZHU P F,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11534-11542.
[24] 姚红革,张玮,杨浩琪,等.深度强化学习联合回归目标定位[J/OL].自动化学报[2021-08-04].http://202.202.244.12:80/rwt/CNKI/https/MSYXTLUQPJUB/10.16383/j.aas.200045.
YAO H G,ZHANG W,YANG H Q,et al.Joint regression object localization based on deep reinforcement learning[J/OL].Acta Automatica Sinica[2021-08-04].http://202.
202.244.12:80/rwt/CNKI/https/MSYXTLUQPJUB/10.16383/
j.aas.c200045.
[25] ZHU P,WEN L,DU D,et al.VisDrone-DET2018:the vision meets drone object detection in image challenge results[C]//Proceedings of the 15th European Conference on Computer Vision Workshops,2018.
[26] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:618-626.
[27] SELVARAJU R R,DAS A,VEDANTAM R,et al.Grad-CAM:why did you say that?[J].arXiv:1611.07450,2016.