Expression Recognition Based on Convolution Residual Network of Attention Pyramid
CHEN Jiamin, XU Yang
1.College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
2.Guiyang Aluminum-Magnesium Design and Research Institute Co., Ltd., Guiyang 550009, China
[1] MEHRABIAN A,RUSSELL J A.An approach to environmental psychology[M].Cambridge:MIT Press,1980:222-253.
[2] EKMAN P E,FRIESEN W.Pictures of facial affect[M].Palo Alto:Consulting Psychologists Press,1976.
[3] GU S T,XU C,FENG B.Facial expression recognition based on global and local feature fusion with CNNs[C]//Proceedings of the 2019 IEEE International Conference on Signal Processing,Communications and Computing,2019:1-5.
[4] YAN Y F,LI C,LU Y Y,et al.Design and experiment of facial expression recognition method based on LBP and CNN[C]//Proceedings of the 2019 IEEE Conference on Industrial Electronics and Applications,2019:602-607.
[5] ZENG N Y,ZHANG H,SONG B Y,et al.Facial expression recognition via learning deep sparse autoencoders[J].Neurocomputing,2018,27(3):643-649.
[6] 亢洁,李思禹,基于注意力机制的人脸表情识别迁移学习方法[J].计算机工程与设计,2021,42(3):797-804.
KANG J,LI S Y.Transfer learning method for facial expression recognition based on attention mechanism[J].Computer Engineering and Design,2021,42(3):797-804.
[7] 柳璇,唐颖军,黄淑英.结合多特征和跨通道加权的面部表情识别[J].小型微型计算机系统,2021,42(2):399-404.
LIU X,TANG Y J,HUANG S Y.Facial expression recognition combined with multiple features and cross-channel weighting[J].Journal of Chinese Computer Systems,2021,42(2):399-404.
[8] 王建霞,陈慧萍,李佳泽,等.基于多特征融合卷积神经网络的人脸表情识别[J].河北科技大学学报,2019,40(6):540-547.
WANG J X,CHEN H P,LI J Z,et al.Facial expression recognition based on multi-feature fusion convolution network[J].Journal of Hebei University of Science and Technology,2019,40(6):540-547.
[9] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[10] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.
1556,2014.
[11] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166.
[12] GLOROT X,BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics,2010:249-256.
[13] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence,2017:4278-4284.
[14] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[15] DUTA I C,LIU L,ZHU F,et al.Pyramidal convolution:rethinking convolutional neural networks for visual recognition[J].arXiv:2006.11538,2020.
[16] HU J,SHEN L,SUN G,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[17] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision,2018:3-19.
[18] GOODFELLOW I J,ERHAN D,CARRIER P L,et al.Challenges in representation learning:a report on three machine learning contests[C]//Proceedings of the 20th International Conference on Neural Information Processing.Berlin:Springer,2013:117-124.
[19] LUCEY P,COHN J F,KANADE T,et al.The extended Cohn-Kanade dataset (CK+):a complete dataset for action unit and emotion-specified expression[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops,2010:94-101.
[20] MIAO S,XU H,HAN Z,et al.Recognizing facial expressions using a shallow convolutional neural network[J].IEEE Access,2019,7:78000-78011.
[21] ZHOU J C,JIA X,SHEN L L,et al.Improved softmax loss for deep learning-based face and expression recognition[J].Cognitive Computation and Systems,2019,1(4):97-102.
[22] GAN Y,CHEN J,YANG Z,et al.Multiple attention network for facial expression recognition[J].IEEE Access,2020,8:7383-7393.
[23] 徐琳琳,张树美,赵俊莉.构建并行卷积神经网络的表情识别算法[J].中国图象图形学报,2019,24(2):227-236.
XU L L,ZHANG S M,ZHAO J L.Expression recognition algorithm for parallel convolutional neural networks[J].Journal of Image and Graphics,2019,24(2):227-236.
[24] AGRAWAL A,MITTAL N.Using CNN for facial expression recognition:a study of the effects of kernel size and number of filters on accuracy[J].The Visual Computer,2020,36(2):405-412.
[25] 梁华刚,雷毅雄.增强可分离卷积通道特征的表情识别研究[J].计算机工程与应用,2022,58(2):184-192.
LIANG H G,LEI Y X.Expression recognition with separable convolution channel enhancement features[J].Computer Engineering and Applications,2022,58(2):184-192.
[26] FEI Z,YANG E,LI D,et al.Combining deep neural network with traditional classifier to recognize facial expressions[C]//Proceedings of the 2019 25th International Conference on Automation and Computing.Piscataway:IEEE,2019:1-6.
[27] SUN X,XIA P P,ZHANG L,et al.A ROI-guided deep architecture for robust facial expressions recognition[J].Information Sciences,2020,522:35-48.
[28] JAIN D K,SHAMSOLMOALI P,SEHDEV P.Extended deep neural network for facial emotion recognition[J].Pattern Recogntion Letters,2019,120:69-74.