Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (18): 90-103.DOI: 10.3778/j.issn.1002-8331.2205-0097
• Generative Adversarial Networks • Previous Articles Next Articles
SUN Shukui, FAN Jing, QU Jinshuai, LU Peidong
Online:
2022-09-15
Published:
2022-09-15
孙书魁,范菁,曲金帅,路佩东
SUN Shukui, FAN Jing, QU Jinshuai, LU Peidong. Survey of Generative Adversarial Networks[J]. Computer Engineering and Applications, 2022, 58(18): 90-103.
孙书魁, 范菁, 曲金帅, 路佩东. 生成式对抗网络研究综述[J]. 计算机工程与应用, 2022, 58(18): 90-103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0097
[1] ALPAYDIN E.Machine learning[M].[S.l.]:MIT Press,2021. [2] SMOLENSKY P.Information processing in dynamical systems:foundations of harmony theory[R].Colorado University.Boulder Department of Computer Science,1986. [3] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [4] HINTON G E,SALAKHUTDINOV R.A better way to pretrain deep boltzmann machines[J].Advances in Neural Information Processing Systems,2012,25. [5] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27. [6] 梁俊杰,韦舰晶,蒋正锋.生成对抗网络GAN综述[J].计算机科学与探索,2020,14(1):1-17. LIANG J J,WEI J J,JIANG Z F.Generative adversarial networks GAN overview[J].Journal of Frontiers of Computer Science and Technology,2020,14(1):1-17. [7] 夏萌霏,叶子鹏,赵旺,等.几何视角下深度神经网络的对抗攻击与可解释性研究进展[J].中国科学(信息科学),2021,51(9):1411-1437. XIA M F,YE Z P,ZHAO W.Adversarial attack and interpretability of the deep neural network from the geometric perspective[J].Science in China(Information Sciences),2021,51(9):1411-1437. [8] BROWNLEE J.Generative adversarial networks with python:deep learning generative models for image synthesis and image translation[M]//Machine learning mastery,2019. [9] 陈佛计,朱枫,吴清潇,等.生成对抗网络及其在图像生成中的应用研究综述[J].计算机学报,2021,44(2):347-369. CHEN F J,ZHU F,WU Q X,et al.A survey about image generation with generative adversarial nets[J].Chinese Journal of Computers,2021,44(2):347-369. [10] CHEN X,DUAN Y,HOUTHOOFT R,et al.Infogan:interpretable representation learning by information maximizing generative adversarial nets[J].arXiv:1606.03657,2016. [11] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning,2017:214-223. [12] LARSEN A B L,S?NDERBY S K,LARO-CHELLE H,et al.Autoencoding beyond pixels using a learned similarity metric[C]//International Conference on Machine Learning,2016:1558-1566. [13] TRAN N T,BUI T A,CHEUNG N M.Dist-GAN:an improved gan using distance constraints[C]//Proceedings of the European Conference on Computer Vision,2018:370-385. [14] GUO X,HONG J,LIN T,et al.Relaxed Wasserstein with applications to GANs[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing,2021:3325-3329. [15] NOWOZIN S,CSEKE B,TOMIOKA R.f-GAN:training generative neural samplers usingvariational divergence minimization[J].Advances in Neural Information Processing Systems,2016,29. [16] MESCHEDER L,NOWOZIN S,GEIGER A.The numerics of GANs[J].Advances in Neural Information Processing Systems,2017,30. [17] MESCHEDER L,GEIGER A,NOWOZIN S.Which training methods for GANs do actually converge?[C]//International Conference on Machine Learning,2018:3481-3490. [18] UEHARA M,SATO I,SUZUKI M,et al.Generative adversarial nets from a density ratio estimation perspective[J].arXiv:1610.02920,2016. [19] LIU M Y,TUZEL O.Coupled generative adversarial networks[J].Advances in Neural Information Processing Systems,2016,29. [20] MAO X,LI Q,XIE H,et al.Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2794-2802. [21] MISHRA D,PRATHOSH A P,ARAVIND J,et al.Unsupervised conditional generation using noise engineered mode matching GAN[C]//Proceedings of International Conference on Learning Representations,2018. [22] LIN M.Softmax GAN[J].arXiv:1704.06191,2017. [23] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014. [24] 马永杰,徐小冬,张茹,等.生成式对抗网络及其在图像生成中的研究进展[J].计算机科学与探索,2021,15(10):1795-1811. MA Y J,XU X D,ZHANG R,et al.Generative adversarial network and its research progress in image generation[J].Journal of Frontiers of Computer Science and Technology,2021,15(10):1795-1811. [25] GHOJOGH B,GHODSI A,KARRAY F,et al.Generative adversarial networks and adversarial autoencoders:tutorial and survey[J].arXiv:2111.13282,2021. [26] ADLER J,LUNZ S.Banach Wasserstein GAN[J].Advances in Neural Information Processing Systems,2018,31. [27] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [28] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [29] MAKHZANI A,SHLENS J,JAITLY N,et al.Adversarial autoencoders[J].arXiv:1511.05644,2015. [30] 叶晨,关玮.生成式对抗网络的应用综述[J].同济大学学报(自然科学版),2020,48(4):591-601. YE C,GUAN W.A review of application of generative adversarial networks[J].Journal of Tongji University(Natural Science),2020,48(4):591-601. [31] 魏丙财,张立晔,孟晓亮,等.基于深度残差生成对抗网络的运动图像去模糊[J].液晶与显示,2021,36(12):1693-1701. WEI B C,ZHANG L Y,MENG X L,et al.Motion image deblurring based on depth residual generative adversarial network[J].Chinese Journal of Liquid Crystals and Displays,2021,36(12):1693-1701. [32] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of wasserstein gans[J].Advances in Neural Information Processing Systems,2017,30. [33] QI G J.Loss-sensitive generative adversarial networks on lipschitz densities[J].International Journal of Computer Vision,2020,128(5):1118-1140. [34] MIYATO T,KATAOKA T,KOYAMA M,et al.Spectral normalization for generative adversarial networks[J].arXiv:1802.05957,2018. [35] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[J].Advances in Neural Information Processing Systems,2016,29. [36] SOLOVEITCHIK M,DISKIN T,MORIN E,et al.Conditional frechet inception distance[J].arXiv:2103.11521,2021. [37] DZIUGAITE G K,ROY D M,GHAHRAMANI Z.Training generative neural networks via maximum mean discrepancy optimization[J].arXiv:1505.03906,2015. [38] XU Q,HUANG G,YUAN Y,et al.An empirical study on evaluation metrics of generative adversarial networks[J].arXiv:1806.07755,2018. [39] DOSSELMANN R,YANG X D.A comprehensive assessment of the structural similarity index[J].Signal,Image and Video Processing,2011,5(1):81-91. [40] WANG Z,SIMONCELLI E P,BOVIK A C.Multiscale structural similarity for image quality assessment[C]//The Thrity-Seventh Asilomar Conference on Signals,Systems & Computers,2003:1398-1402. [41] KURACH K,LU?I? M,ZHAI X,et al.A large-scale study on regularization and normalization in GANs[C]//International Conference on Machine Learning,2019:3581-3590. [42] SATHE S,AGGARWAL C C.Nearest neighbor classifiers versus random forests and support vector machines[C]//2019 IEEE International Conference on Data Mining,2019:1300-1305. [43] ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1125-1134. [44] SIDDIQUE N,PAHEDING S,ELKIN C P,et al.U-net and its variants for medical image segmentation:a review of theory and applications[J].IEEE Access,2021. [45] CHANDALIYA P K,NAIN N.Child face age progression and regression using self-attention multi-scale patch GAN[C]//International Joint Conference on Biometrics(IJCB 2021),2021:1-8. [46] YU W,CHEN F,CHOI J.Multi-pose face recognition based on TP-GAN[C]//International Conference on Intelligent and Fuzzy Systems,2021:725-732. [47] ZENG Y,FU J,CHAO H,et al.Aggregated contextual transformations for high-resolution image inpainting[J].IEEE Transactions on Visualization and Computer Graphics,2022. [48] YANG C,LU X,LIN Z,et al.High-resolution image inpainting using multi-scale neural patch synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6721-6729. [49] IIZUKA S,SIMO-SERRA E,ISHIKAWA H.Globally and locally consistent image completion[J].ACM Transactions on Graphics(ToG),2017,36(4):1-14. [50] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [51] YAN Y,SHEN G,ZHANG S,et al.Sequence generative adversarial nets with a conditional discriminator[J].Neurocomputing,2021,429:69-76. [52] MOGREN O.C-RNN-GAN:continuous recurrent neural networks with adversarial training[J].arXiv:1611.09904,2016. [53] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [54] LEE S,HWANG U,MIN S,et al.A seqgan for polyphonic music generation[J].arXiv:1710.11418,2017. [55] LIN K,LI D,HE X,et al.Adversarial ranking for language generation[J].Advances in Neural Information Processing Systems,2017,30. [56] GUIMARAES G L,SANCHEZ-LENGELING B,OUTEIRAL C,et al.Objective-reinforced generative adversarial networks(ORGAN) for sequence generation models[J].arXiv:1705.10843,2017. [57] HSU C,HWANG H T,WU Y C,et al.Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks[J].arXiv:1704. 00849,2017. [58] 庄跃生,林珊玲,林志贤,等.生成对抗网络在数据异常检测中的研究[J].计算机工程与应用,2022,58(4):143-149. ZHUANG Y S,LIN S L,LIN Z X,et al.Study on generative adversarial network for data anomaly detection[J].Computer Engineering and Applications,2022,58(4):143-149. [59] MOTI Z,HASHEMI S,KARIMIPOUR H,et al.Generative adversarial network to detect unseen Internet of things malware[J].Ad Hoc Networks,2021,122:102591. [60] 万梦翔,姚寒冰.面向恶意网页训练数据生成的GAN模型[J].计算机工程与应用,2021,57(6):124-130. WAN M X,YAO H B.GAN model for malicious Web training data generative[J].Computer Engineering and Applications,2021,57(6):124-130. [61] SHIN H,LEE J K,KIM J,et al.Continual learning with deep generative replay[J].Advances in Neural Information Processing Systems,2017,30. [62] 吴辰文,梁雨欣,田鸿雁.改进卷积神经网络的COVID-19 CT影像分类方法研究[J].计算机工程与应用,2022,58(2):225-234. WU C W,LIANG Y X,TIAN H Y.Research on COVID-19 CT image classification method based on improved convolutional neural network[J].Computer Engineering and Applications,2022,58(2):225-234. [63] MENON S,MANGALAGIRI J,GALITA J,et al.CCS-GAN:COVID-19 CT-scan classification with very few positive training images[J].arXiv:2110.01605,2021. [64] SILVA V L S,HEANEY C E,LI Y,et al.Data assimilation predictive GAN(DA-PredGAN):applied to determine the spread of COVID-19[J].arXiv:2105.07729,2021. [65] WAHEED A,GOYAL M,GUPTA D,et al.CovidGAN:data augmentation using auxiliary classifier GAN for improved Covid-19 detection[J].IEEE Access,2020,8:91916-91923. [66] LEE K,CHANG H,JIANG L,et al.Vitgan:training GANs with vision transformers[J].arXiv:2107.04589,2021. [67] GONG X,CHANG S,JIANG Y,et al.Autogan:Neural architecture search for generative adversarial networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:3224-3234. [68] LI C,XU T,ZHU J,et al.Triple generative adversarial nets[J].Advances in Neural Information Processing Systems,2017,30. |
[1] | GAO Wenchao, REN Shengbo, TIAN Chi, ZHAO Shanshan. Research on Method of Animated Avatar Generation Based on Multi-Level Generative Adversarial Networks [J]. Computer Engineering and Applications, 2022, 58(9): 230-237. |
[2] | LU Peng, CHEN Jinyu, ZOU Guoliang, WAN Ying, ZHENG Zongsheng, WANG Zhenhua. Personalized Handwritten Chinese Character Generation Method for Unsupervised Image Translation [J]. Computer Engineering and Applications, 2022, 58(8): 221-229. |
[3] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[4] | WEI Chengfeng, DONG Hongwei, XU Xiaochun. Attribute Editable Person Image Synthesis Based on Spatial Transformation [J]. Computer Engineering and Applications, 2022, 58(6): 219-226. |
[5] | LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models [J]. Computer Engineering and Applications, 2022, 58(5): 34-49. |
[6] | ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms [J]. Computer Engineering and Applications, 2022, 58(5): 50-65. |
[7] | LI Peiyang, LI Xuan, CHEN Junjie, CHEN Yongle. Adversarial Sample Generation for Evading Botnet Traffic Detection [J]. Computer Engineering and Applications, 2022, 58(4): 126-133. |
[8] | JU Sibo, XU Jing, LI Yanfang. Text-to-Single Image Method Based on Self-Attention [J]. Computer Engineering and Applications, 2022, 58(3): 249-258. |
[9] | HUANG Yanqian, CHI Dongxiang, XU Lingling. Research on Few-Shot Learning Based on Embedding Learning [J]. Computer Engineering and Applications, 2022, 58(3): 34-49. |
[10] | MI Aizhong, ZHANG Wei, QIAO Yingxu, XU Chengjing, HUO Zhanqiang. Review of Research on Facial Makeup Transfer [J]. Computer Engineering and Applications, 2022, 58(2): 15-26. |
[11] | WU Chenwen, LIANG Yuxin, TIAN Hongyan. Research on COVID-19 CT Image Classification Method Based on Improved Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(2): 225-234. |
[12] | LI Yunlong, QING Linbo, HAN Longmei, WANG Yuchen. Survey on Visual Affordance Research [J]. Computer Engineering and Applications, 2022, 58(18): 1-15. |
[13] | ZHAO Chen, SHUAI Renjun, MA Li, LIU Wenjia, WU Menglin. Generation and Classification of Skin Cancer Images Based on Self-Attention StyleGAN [J]. Computer Engineering and Applications, 2022, 58(18): 111-121. |
[14] | ZHAO Lulu, CHEN Yanxiang, ZHAO Pengcheng, ZHU Yupeng, SHENG Zhentao. Generating Face from Voice:Method of Voice-Driven Static and Dynamic Face Generation [J]. Computer Engineering and Applications, 2022, 58(18): 122-129. |
[15] | FENG Jun, LI Yan, HANG Tingting. Survey on Question Decomposition Method in Question Answering System [J]. Computer Engineering and Applications, 2022, 58(17): 23-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||