Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (18): 90-103.DOI: 10.3778/j.issn.1002-8331.2205-0097

• Generative Adversarial Networks • Previous Articles     Next Articles

Survey of Generative Adversarial Networks

SUN Shukui, FAN Jing, QU Jinshuai, LU Peidong   

  1. 1.School of Electrical and Information Technology, Yunnan Minzu University, Kunming 650000, China
    2.University Laboratory of Information and Communication on Security Backup and Recovery in Yunnan Province, Yunnan Minzu University, Kunming 650000, China
  • Online:2022-09-15 Published:2022-09-15

生成式对抗网络研究综述

孙书魁,范菁,曲金帅,路佩东   

  1. 1.云南民族大学 电气信息工程学院,昆明 650000
    2.云南民族大学 云南省高校信息与通信安全灾备重点实验室,昆明 650000

Abstract: With its strong adversary learning ability, generative adversarial networks(GAN) is favored by more and more researchers in many fields. This paper expounds the development background, framework and objective function of GAN, analyzes the causes of pattern collapse and gradient disappearance in the training process, and introduces in detail the GAN derived model proposed through the change of architecture and the modification of objective function. Then, it summarizes some standards used to evaluate the quality and diversity of generated images, and summarizes the wide application of GAN in different fields, Finally, this paper summarizes and puts forward some prospects for the future research direction in this field.

Key words: machine learning, generative adversarial networks, image generation, unsupervised learning

摘要: 生成式对抗网络(GAN)凭借其强大的对抗学习能力受到越来越多研究者的青睐,并在诸多领域内展现出巨大的潜力。阐述了GAN的发展背景、架构、目标函数,分析了训练过程中出现模式崩溃和梯度消失的原因,并详细介绍了通过架构变化和目标函数修改而提出GAN衍生模型,对一些用来评估生成图像质量和多样性的标准进行了小结,总结了GAN在不同领域的广泛应用,总结全文并对该领域未来的研究方向提出一些展望。

关键词: 机器学习, 生成式对抗网络, 图像生成, 无监督学习