XU Zhenhao, SHEN Xi, LI Xia. Magnetic Resonance Images Reconstruction Based on Generative Adversarial Network[J]. Computer Engineering and Applications, 2022, 58(15): 238-245.
[1] 周金鹏.MRI快速成像若干研究[D].北京:北京理工大学,2015.
ZHOU J P.Several researches on rapid MRI[D].Beijing:Beijing Institute of Technology,2015.
[2] 柴青焕,苏冠群,聂生东.磁共振部分K空间重建算法[J].中国医学物理学杂志,2018,35(5):537-542.
CHAI Q H,SU G Q,NIE S D.Magnetic resonance partial K-space reconstruction algorithm[J].Chinese Journal of Medical Physics,2018,35(5):537-542.
[3] 李信真,车刚明,欧阳洁,等.计算方法[M].西安:西北工业大学出版社,2000.
LI X Z,CHE G M,OUYANG J,et al.Calculation method[M].Xi’an:Northwestern Polytechnical University Press,2000.
[4] CANDèS E J,ROMBERG J,TAO T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[5] LUSTIG M,SANTOS J M,LEE J H,et al.Application of compressed sensing for rapid MR imaging[C]//Signal Processing with Adaptive Sparse Structured Representations Workshop,Rennes,France,2005.
[6] LI Z,ZHANG T,WAN P,et al.SEGAN:structure-enhanced generative adversarial network for compressed sensing MRI reconstruction[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:1012-1019.
[7] HOLLINGSWORTH K G.Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[J].Physics in Medicine & Biology,2015,60(21):297.
[8] HYUN C M,KIM H P,LEE S M,et al.Deep learning for under-sampled MRI reconstruction[J].Physics in Medicine & Biology,2018,63(13):135007.
[9] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241.
[10] SEITZER M,YANG G,SCHLEMPER J,et al.Adversarial and perceptual refinement for compressed sensing MRI reconstruction[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2018:232-240.
[11] SCHLEMPER J,CABALLERO J,HAJNAL J V,et al.A deep cascade of convolutional neural networks for MR image reconstruction[C]//International Conference on Information Processing in Medical Imaging.Cham:Springer,2017:647-658.
[12] YANG Y,SUN J,LI H,et al.ADMM-CSNet:a deep learning approach for image compressive sensing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(3):521-538.
[13] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014:2672-2680.
[14] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017.
[15] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015.
[16] 王坤峰,苟超,段艳杰,等.生成对抗网络GAN的研究与展望[J].自动化学报,2017,43(3):321-332.
WANG K F,GOU C,DUAN Y J,et al.Research and prospect of generative adversarial network GAN[J].Acta Automatica Sinica,2017,43(3):321-332.
[17] SUN L,FAN Z,HUANG Y,et al.Compressed sensing MRI using a recursive dilated network[C]//AAAI Conference,2018:2444-2451.
[18] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456.
[19] XU B,WANG N,CHEN T,et al.Empirical evaluation of rectified activations in convolutional network[J].arXiv:1505.00853,2015.
[20] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,2011:315-323.
[21] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4681-4690.
[22] GATYS L A,ECKER A S,BETHGE M.Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2414-2423.
[23] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large scale image recognition[J].arXiv:1409.1556,2014.
[24] JOHNSON J,ALAHI A,LI F F.Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision.Cham:Springer,2016:694-711.
[25] 叶盛楠,苏开娜,肖创柏,等.基于结构信息提取的图像质量评价[J].电子学报,2008(5):856-861.
YE S N,SU K N,XIAO C B,et al.Image quality assessment based on structural information extraction[J].Acta Electronica Sinica,2008(5):856-861.
[26] SETIADI D R I M.PSNR vs SSIM:imperceptibility quality assessment for image steganography[J].Multimedia Tools and Applications,2020.