WEI Pengfei, ZENG Bi, LIAO Wenxiong. RoBERTa-Based Sarcasm Detection Model in Conversation Threads from Social Media[J]. Computer Engineering and Applications, 2022, 58(13): 164-170.
[1] 张林,钱冠群,樊卫国,等.轻型评论的情感分析研究[J].软件学报,2014,25(12):2790-2807.
ZHANG L,QIAN G Q,FAN W G,et al.Sentiment analysis based on light reviews[J].Journal of Software,2014,25(12):2790-2807.
[2] MURESAN S,GONZALEZ-IBANEZ R,GHOSH D,et al.Identification of nonliteral language in social media:A case study on sarcasm[J].Journal of the Association for Information Science and Technology,2016,67(11):2725-2737.
[3] GHOSH D,FABBRI A R,MURESAN S.The role of conversation context for sarcasm detection in online interactions[C]//Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,2017:186-196.
[4] HAZARIKA D,PORIA S,GORANTLA S,et al.CASCADE:Contextual sarcasm detection in online discussion forums[C]//Proceedings of the 27th International Conference on Computational Linguistics,2018:1837-1848.
[5] OPREA S,MAGDY W.Exploring author context for detecting intended vs perceived sarcasm[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:2854-2859.
[6] 韩虎,赵启涛,孙天岳,等.面向社交媒体评论的上下文语境讽刺检测模型[J].计算机工程,2021,47(1):66-71.
HAN H,ZHAO Q T,SUN T Y,et al.Contextual sarcasm detection model for social media comments[J].Computer Engineering,2021,47(1):66-71.
[7] DAVIDOV D,TSUR O,RAPPOPORT A.Semi-supervised recognition of sarcasm in Twitter and Amazon[C]//Proceedings of the 14th Conference on Computational Natural Language Learning,2010:107-116.
[8] JOSHI A,SHARMA V,BHATTACHARYYA P.Harnessing context incongruity for sarcasm detection[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,2015:757-762.
[9] PORIA S,CAMBRIA E,HAZARIKA D,et al.A deeper look into sarcastic tweets using deep convolutional neural networks[C]//Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers,2016:1601-1612.
[10] GHOSH A,VEALE T.Fracking sarcasm using neural network[C]//Proceedings of the 7th Workshop on Computational Approaches to Subjectivity,Sentiment and Social Media Analysis,2016:161-169.
[11] TAY Y,TUAN L A,HUI S C,et al.Reasoning with sarcasm by reading in-between[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018:1010-1020.
[12] ZHANG M,ZHANG Y,FU G.Tweet sarcasm detection using deep neural network[C]//Proceedings of COLING 2016,The 26th International Conference on Computational Linguistics:Technical Papers,2016:2449-2460.
[13] BARUAH A,DAS K,BARBHUIYA F,et al.Context-aware sarcasm detection using BERT[C]//Proceedings of the Second Workshop on Figurative Language Processing,2020:83-87.
[14] DEVLIN J,CHANG M W,LEE K,et al.BERT:Pretraining of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019:4171-4186.
[15] LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly optimized bert pretraining approach[J].arXiv:1907.11692,2019.
[16] WALLACE B C.Computational irony:A survey and new perspectives[J].Artificial Intelligence Review,2015,43(4):467-483.
[17] JOSHI A,BHATTACHARYYA P,CARMAN M J.Auto-matic sarcasm detection:A survey[J].ACM Computing Surveys(CSUR),2017,50(5):1-22.
[18] KHODAK M,SAUNSHI N,VODRAHALLI K.A large self-annotated corpus for sarcasm[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation,2018.
[19] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[J].arXiv:1301.3781,2013.
[20] PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1532-1543.
[21] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1746-1751.
[22] HUANG B,OU Y,CARLEY K M.Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of International Conference on Social Computing,Behavioral?Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation,2018:197-206.
[23] GHOSH D,FABBRI A R,MURESAN S.Sarcasm analysis using conversation context[J].Computational Linguistics,2018,44(4):755-792.
[24] JAVDAN S,MINAEI-BIDGOLI B.Applying transformers and aspect-based sentiment analysis approaches on sarcasm detection[C]//Proceedings of the Second Workshop on Figurative Language Processing,2020:67-71.
[25] SRIVASTAVA H,VARSHNEY V,KUMARI S,et al.A novel hierarchical BERT architecture for sarcasm detec-tion[C]//Proceedings of the Second Workshop on Figurative Language Processing,2020:93-97.
[26] DADU T,PANT K.Sarcasm detection using context separators in online discourse[C]//Proceedings of the Second Workshop on Figurative Language Processing,2020:51-55.
[27] KUMAR A,ANAND V.Transformers on sarcasm detection with context[C]//Proceedings of the Second Workshop on Figurative Language Processing,2020:88-92.
[28] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[29] SCHMIDHUBER J,HOCHREITER S.Long short-term memory[J].Neural Computer,1997,9(8):1735-1780.
[30] GHOSH D,VAJPAYEE A,MURESAN S.A report on the 2020 sarcasm detection shared task[J].arXiv:2005. 05814,2020.