Facial Expression Recognition in Wild Based on Attention and Vision Transformer
LUO Yan, FENG Tianbo, SHAO Jie
1.School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China
2.Information and Telecommunication Branch, State Grid Shanghai Municipal Electric Power Company, Shanghai 200000, China
LUO Yan, FENG Tianbo, SHAO Jie. Facial Expression Recognition in Wild Based on Attention and Vision Transformer[J]. Computer Engineering and Applications, 2022, 58(10): 200-207.
[1] BARENTINE C,MCNAY A,PFAFFENBICHLER R,et al.A VR teleoperation suite with manipulation assist[C]//2021 ACM/IEEE International Conference on Human-Robot Interaction,2021:442-446.
[2] FEI Z,YANG E,LI D D U,et al.Deep convolution network based emotion analysis towards mental health care[J].Neurocomputing,2020,388:212-227.
[3] JOSHI A,KYAL S,BANERJEE S,et al.In-the-wild drowsiness detection from facial expressions[C]//2020 IEEE Intelligent Vehicles Symposium,2020:207-212.
[4] ZHAO X,LIANG X,LIU L,et al.Peak-piloted deep network for facial expression recognition[C]//14th European Conference on Computer Vision.Cham:Springer,2016:425-442.
[5] YU Z,LIU G,LIU Q,et al.Spatio-temporal convolutional features with nested LSTM for facial expression recognition[J].Neurocomputing,2018,317:50-57.
[6] LI Y,ZENG J,SHAN S,et al.Patch-gated CNN for occlusion-aware facial expression recognition[C]//2018 24th International Conference on Pattern Recognition,2018:2209-2214.
[7] LI Y,ZENG J,SHAN S,et al.Occlusion aware facial expression recognition using CNN with attention mechanism[J].IEEE Transactions on Image Processing,2018,28(5):2439-2450.
[8] WANG K,PENG X,YANG J,et al.Region attention networks for pose and occlusion robust facial expression recognition[J].IEEE Transactions on Image Processing,2020,29:4057-4069.
[9] DING H,ZHOU P,CHELLAPPA R.Occlusion-adaptive deep network for robust facial expression recognition[C]//2020 IEEE International Joint Conference on Biometrics,2020:1-9.
[10] WANG K,PENG X,YANG J,et al.Suppressing uncertainties for large-scale facial expression recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:6897-6906.
[11] SHAO J,LUO Y.TAMNet:two attention modules-based network on facial expression recognition under uncertainty[J].Journal of Electronic Imaging,2021,30(3):033021.
[12] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020.
[13] TOUVRON H,CORD M,DOUZE M,et al.Training data-efficient image transformers & distillation through attention[C]//2021 International Conference on Machine Learning,2021:10347-10357.
[14] MA F,SUN B,LI S.Robust facial expression recognition with convolutional visual transformers[J].arXiv:2103.16854,2021.
[15] LI H,SUI M,ZHAO F,et al.MViT:mask vision transformer for facial expression recognition in the wild[J].arXiv:2106.04520,2021.
[16] DONG X,BAO J,CHEN D,et al.CSWin transformer:a general vision transformer backbone with cross-shaped windows[J].arXiv:2107.00652,2021.
[17] PARK J,WOO S,LEE J Y,et al.BAM:bottleneck attention module[C]//British Machine Vision Conference,2018.
[18] DENG J,GUO J,XUE N,et al.Arcface:additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4690-4699.
[19] DENG J,GUO J,LIU T,et al.Sub-center ArcFace:boosting face recognition by large-scale noisy web faces[C]//16th European Conference on Computer Vision.Cham:Springer,2020:741-757.
[20] LOSHCHILOV I,HUTTER F.Decoupled weight decay regularization[C]//2018 International Conference on Learning Representations,2018.
[21] LI S,DENG W,DU J P.Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2852-2861.
[22] BARSOUM E,ZHANG C,FERRER C C,et al.Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//18th ACM International Conference on Multimodal Interaction,2016:279-283.
[23] WANG Z,WANG G,HUANG B,et al.Masked face recognition dataset and application[J].arXiv:2003.09093,2020.
[24] 吕诲,童倩倩,袁志勇.基于人脸分割的复杂环境下表情识别实时框架[J].计算机工程与应用,2020,56(12):134-140.
LV H,TONG Q Q,YUAN Z Y.Realtime architecture for facial expression recognition in complex scenes based on face region segmentation[J].Computer Engineering and Applications,2020,56(12):134-140.
[25] 毛君宇,何廷年,郭艺,等.基于全局注意力及金字塔卷积网络的表情识别[J/OL].计算机工程与应用(2021-09-13)[2021-11-30].http://kns.cnki.net/kcms/detail/11.2127.TP.20210913.
1327.014.html.
MAO J Y,HE Y N,GUO Y,et al.Expression recognition based on global attention and pyramidal convolution network[J/OL].Computer Engineering and Applications(2021-09-13)[2021-11-30].http://kns.cnki.net/kcms/detail/11.2127.TP.20210913.1327.014.html.
[26] FAN X,DENG Z,WANG K,et al.Learning discriminative representation for facial expression recognition from un-certainties[C]//2020 IEEE International Conference on Image Processing,2020:903-907.
[27] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision,2017:618-626.
[28] GRAHAM B,EL-NOUBY A,TOUVRON H,et al.LeViT:a vision Transformer in ConvNet’s clothing for faster inference[J].arXiv:2104.01136,2021.
[29] ZHANG Q,YANG Y.ResT:an efficient transformer for visual recognition[J].arXiv:2105.13677,2021.
[30] CHU X,TIAN Z,WANG Y,et al.Twins:revisiting spatial attention design in vision transformers[J].arXiv:2104.13840,
2021.
[31] LIU Z,LIN Y,CAO Y,et al.Swin Transformer:hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021.
[32] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.