LIU Lulu, YANG Yan, WANG Jie. ABAFN:Aspect-Based Sentiment Analysis Model for Multimodal[J]. Computer Engineering and Applications, 2022, 58(10): 193-199.
[1] XU N,MAO W,CHEN G.Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,Hawaii,Jan 27-Feb 1,2019.Menlo Park:AAAI,2019:371-378.
[2] TANG D,QIN B,FENG X,et al.Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers,Osaka,Dec 11-16,2016.New York:ACM,2016:3298-3307.
[3] WANG Y,HUANG M,ZHAO L.Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,Austin,Nov 1-4,2016.Stroudsburg:ACL,2016:606-615.
[4] CHEN P,SUN Z,BING L,et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,Copenhagen,Sep 9-11,2017.Stroudsburg:ACL,2017:452-461.
[5] MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,Melbourne,Aug 19-25,2017.San Francisco:Morgan Kaufmann,2017:4068-4074.
[6] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Minneapolis,Jun 2-7,2019:4171-4186.
[7] SONG Y,WANG J,JIANG T,et al.Attentional encoder network for targeted sentiment classification[J].arXiv:1902.
09314,2019.
[8] SHENOY A,SARDANA A.Multilogue-Net:a context-aware RNN for multi-modal emotion detection and sentiment analysis in conversation[C]//2nd Grand-Challenge and Workshop on Multimodal Language(Challenge-HML),Seattle,Jul 5-10,2020:19-28.
[9] KUMAR A,VEPA J.Gated mechanism for attention based multimodal sentiment analysis[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing,Barcelona,May 4-9,2020.Piscataway:IEEE,2020:4477-4481.
[10] TRUONG Q T,LAUW H W.VistaNet:visual aspect attention network for multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,Hawaii,Jan 27-Feb 1,2019.Menlo Park:AAAI,2019:305-312.
[11] YADAV A,VISHWAKARMA D K.A deep multi-level attentive network for multimodal sentiment analysis[J].arXiv:2012.08256,2020.
[12] YU J,JIANG J,XIA R.Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2019,28:429-439.
[13] YU J,JIANG J.Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,Macao,Aug 10-16,2019.San Francisco:Morgan Kaufmann,2019:5408-5414.
[14] VASWANI A,SHAZEER N,PARMAE N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,Long Beach,Dec 3-9,2017.Cambridge:MIT Press,2017:6000-6010.
[15] TANG D,QIN B,LIU T.Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,Austin,Nov 1-4,2016.Stroudsburg:ACL,2016:214-224.
[16] XU N,MAO W,CHEN G.A co-memory network for multimodal sentiment analysis[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval,Ann Arbor,Jul 8-12,2018.New York:ACM,2018:929-932.