ZHANG Tianrui, WU Baoku, ZHOU Fuqiang. Research on Improved Ant Colony Algorithm for Robot Global Path Planning[J]. Computer Engineering and Applications, 2022, 58(1): 282-291.
[1] 王中玉,曾国辉,黄勃.基于改进双向A~*的移动机器人路径规划算法[J].计算机应用,2019,39(9):2517-2522.
WANG Z Y,ZENG G H,HUANG B.Global optimal path planning for robots with improved A* algorithm[J].Journal of Computer Applications,2019,39(9):2517-2522.
[2] 张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用,2020,56(8):10-19.
ZHANG S C,PU J X,SI Y N,et al.Survey on application of ant colony algorithm in path planning of mobile robot[J].Computer Engineering and Applications,2020,56(8):10-19.
[3] 王春颖,刘平,秦洪政.移动机器人的智能路径规划算法综述[J].传感器与微系统,2018,37(8):5-8.
WANG C Y,LIU P,QIN H Z.Review on intelligent path planning algorithm of mobile robots[J].Transducer and Microsystem Technologies,2018,37(8):5-8.
[4] 曹凯,陈阳泉,高嵩,等.涡流人工势场引导下的RRT~*移动机器人路径规划[J].计算机科学与探索,2021,15(4):723-732.
CAO K,CHEN Y Q,GAO C,et al.Vortex artificial-potential-field guided RRT* for path planning of mobile robot[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):723-732.
[5] 王洪斌,尹鹏衡,郑维,等.基于改进的A~*算法与动态窗口法的移动机器人路径规划[J].机器人,2020,42(3):346-353.
WANG H B,YIN P H,ZHENG W,et al.Mobile robot path planning based on improved A* algorithm and dynamic window method[J].Robot,2020,42(3):346-353.
[6] ZHANG B,TANG L,DECASTRO J,et al.A recursive receding horizon planning for unmanned vehicles[J].IEEE Transactions on Industrial Electronics,2015,62(5):2912-2920.
[7] 徐林,范昕炜.基于改进遗传算法的餐厅服务机器人路径规划[J].计算机应用,2017,37(7):1967-1971.
XU L,FAN X W.Path planning for restaurant service robot based on improved genetic algorithm[J].Journal of Computer Applications,2017,37(7):1967-1971.
[8] 强宁,高洁,康凤举.基于PSO和三次样条插值的多机器人全局路径规划[J].系统仿真学报,2017,29(7):1397-1404.
QIANG N,GAO J,KANG F J.Multi-robots global path planning based on PSO algorithm and cubic spline[J].Journal of System Simulation,2017,29(7):1397-1404.
[9] 马小陆,梅宏.基于改进势场蚁群算法的移动机器人全局路径规划[J].机械工程学报,2021,57(1):19-27.
MA X L,MEI H.Mobile robot global path planning based on improved ant colony system algorithm with potential field[J].Journal of Mechanical Engineerings,2021,57(1):19-27.
[10] 陈克斌,鲁云军,韩梦瑶,等.一种基于双编码遗传算法的机动微波接力网组网方法[J].控制与决策,2020,35(12):2915-2922.
CHEN K B,LU Y J,HAN M Y,et al.Mobile microwave relay network construction method based on double coding genetic algorithm[J].Control and Decision,2020,35(12):2915-2922.
[11] 张国辉,胡一凡,孙靖贺.改进遗传算法求解多时间约束的柔性作业车间调度问题[J].工业工程,2020,23(2):19-25.
ZHANG G H,HU Y F,SUN J H.An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J].Industrial Engineering Journal,2020,23(2):19-25.
[12] 宋启松,李少波,柘龙炫,等.基于改进遗传算法的自动导引小车路径规划[J].组合机床与自动化加工技术,2020(7):88-92.
SONG Q S,LI S B,ZHE L X,et al.Path planning for automatic guided vehicle based on improved genetic algorithm[J].Modular Machine Tool & Automatic Manufacturing Technique,2020(7):88-92.
[13] 张进峰,杨涛宁,马伟皓.基于多目标粒子群算法的船舶航速优化[J].系统仿真学报,2019,31(4):787-794.
ZHANG J F,YANG T N,MA W H.Ship speed optimization based on multi-objective particle swarm algorithm[J].Journal of System Simulation,2019,31(4):787-794.
[14] 吴永明,戴隆州,李少波,等.基于改进粒子群优化算法的混流装配线演进平[J].计算机集成制造系统,2017,23(4):781-790.
WU Y M,DAI L Z,LI S B,et al.Mixed assembly line evolution balancing based on improved particle swarm algorithm[J].Computer Integrated Manufacturing Systems,2017,23(4):781-790.
[15] 罗阳阳,彭晓燕.基于改进PSO的四轮移动机器人全局路径规划[J].计算机仿真,2020,37(7):373-379.
LUO Y Y,PENG X Y.Global path planning of four-wheel mobile robot based on improved PSO[J].Computer Simulation,2020,37(7):373-379.
[16] DORIGO M,GAMBARDELLA L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
[17] 吉珊珊.基于增强蚁群算法的传感网移动sink路径规划[J].系统仿真学报,2019,31(11):2543-2552.
JI S S.Path Planning for mobile sink based on enhanced ant colony optimization algorithm[J].Journal of System Simulation,2019,31(11):2543-2552.
[18] 杜玉红,张岩,赵焕峰.基于参数优化蚁群算法的机器人路径规划研究[J].现代制造工程,2020(9):7-14.
DU Y H,ZHANG Y,ZHAO H F.Research on robot path planning based on parameters optimized ant colony optimization[J].Modern Manufacturing Engineering,2020(9):7-14.
[19] 徐菱,付文浩,江文辉,等.基于16方向24邻域改进蚁群算法的移动机器人路径规划[J].控制与决策,2021,36(5):1137-1146.
XU L,FU W H,JIANG W H,et al.Mobile robots path planning based on 16-directions 24-neighborhoods improved ant colony algorithm[J].Control and Decision,2021,36(5):1137-1146.
[20] 李志锟,黄宜庆,徐玉琼.改进变步长蚁群算法的移动机器人路径规划[J].电子测量与仪器学报,2020,34(8):15-21.
LI Z K,HUANG Y Q,XU Y Q.Path planning of mobile robot based on improved variable step size ant colony algorithm[J].Journal of Electronic Measurement and Instrumentation,2020,34(8):15-21.
[21] 赵春芳,李江昊,张大伟.基于改进免疫遗传优化蚁群算法的移动机器人路径寻优研究[J].计量学报,2019,40(3):505-510.
ZHAO C F,LI J H,ZHANG D W.Robot path optimization research based on improved immune genetic optimization ant colony algorithm[J].Acta Metrologica Sinica,2019,40(3):505-510.
[22] 何少佳,史剑清,王海坤.基于改进蚁群粒子群算法的移动机器人路径规划[J].桂林理工大学学报,2014,34(4):765-770.
HE S J,SHI J Q,WANG H K.Path planning for mobile robot based on improved ant colony and particle swarm optimization[J].Journal of Guilin University of Technology,2014,34(4):765-770.
[23] 陈思远,林丕源,黄沛杰.指针网络改进遗传算法求解旅行商问题[J].计算机工程与应用,2020,56(19):231-236.
CHEN S Y,LIN P Y,HUANG P J.Pointer network improved genetic algorithm for solving traveling salesmen problem[J].Computer Engineering and Applications,2020,56(19):231-236.
[24] 任红格,胡鸿长,史涛.基于改进蚁群算法的移动机器人全局路径规划[J].华北理工大学学报(自然科学版),2021,43(2):102-109.
REN H G,HU H C,SHI T.Global path planning of mobile robots based on improved ant colony algorithm[J].Journal of North China University of Science and Technology(Natural Science Edition),2021,43(2):102-109.