CHENG Yi, HAO Mimi. Path Planning for Indoor Mobile Robot with Improved Deep Reinforcement Learning[J]. Computer Engineering and Applications, 2021, 57(21): 256-262.
[1] GAO J,YE W,GUO J.Deep reinforcement learning for indoor mobile robot path planning[J].Sensors,2020,20(19):5493.
[2] 霍凤财,迟金,黄梓健.移动机器人路径规划算法综述[J].吉林大学学报(信息科学版),2018,36(6):639-647.
HUO F C,CHI J,HUANG Z J.Review of path planning for mobile robots[J].Journal of Jilin University(Information Science Edition),2018,36(6):639-647.
[3] LIU Z,LIU H,LU Z.A dynamic fusion path finding algorithm using Delaunay triangulation and improved a-star for mobile robots[J].IEEE Access,2021,9:20602-20621.
[4] 罗强,王海宝,崔小劲.改进人工势场法自主移动机器人路径规划[J].控制工程,2019,26(6):1091-1098.
LUO Q,WANG H B,CUI X J.Autonomous mobile robot path planning based on improved artificial potential method[J].Control Engineering of China,2019,26(6):1091-1098.
[5] ZHANG Z,QIAO B,ZHAO W.A predictive path planning algorithm for mobile robot in dynamic environments based on rapidly exploring random tree[J].Arabian Journal for Science and Engineering,2021,46:8223-8232.
[6] 王珂,卜祥津,李瑞峰.景深约束下的深度强化学习机器人路径规划[J].华中科技大学学报(自然科学版),2018,46(12):77-82.
WANG K,BU X J,LI R F.Path planning for robots based on deep reinforcement learning by depth constraint[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(12):77-82.
[7] HASSELT H V,GUEZ A,SILVER D.deep reinforcement learning with double q-learning[J].arXiv:1509.06461,2015.
[8] DUGULEANA M,MOGAN G.Neural networks based reinforcement learning for mobile robots obstacle avoidance[J].Expert Systems with Applications,2016,62(15):104-115.
[9] MNIH V,KORAY K,DAVID S.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533.
[10] TAI T,LI S,LIU M.A deep-network solution towards model-less obstacle avoidance[C]//International Conference on Intelligent Robots and Systems(IROS),Daejeon,2016:2759-2764.
[11] YU X,WANG P,ZHANG Z.Learning-based end-to-end path planning for lunar rovers with safety constraints[J].Sensors,2021,21(3):796.
[12] 徐晓苏,袁杰.基于改进强化学习的移动机器人路径规划方法[J].中国惯性技术学报,2019,27(3):314-320.
XU X S,YUAN J.Path planning for mobile robot based on improved reinforcement learning algorithm[J].Journal of Chinese Inertirl Technology,2019,27(3):314-320.
[13] HUANG H,DENG X,ZHANG W.Towards multi-modal perception-based navigation:a deep reinforcement learning method[J].IEEE Robotics and Automation Letters,2021,6(3):4986-4993.
[14] ZHONG J,WANG T,CHENG L.Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics[J].Complex & Intelligent Systems,2021(2).
[15] OLIMPIYA S,PRITHVIRAJ D,BRADLEY W.Real-time robot path planning from simple to complex obstacle patterns via transfer learning of options[J].Autonomous Robots,2019,43(8):2071-2093.
[16] LI B,WU Y.Path planning for UAV ground target tracking via deep reinforcement learning[J].IEEE Access,2020,8:29064-29074.
[17] AKLA B,REM A,BR A.Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot[J].Automation in Construction,2020,112.
[18] 桂林,武小悦.部分可观测马尔可夫决策过程算法综述[J].系统工程与电子技术,2008(6):1058-1064.
GUI L,WU X Y.Survey of algorithms for partially observable Markov decision processes[J].Systems Engineering and Electronics,2008(6):1058-1064.
[19] JIANG L,HUANG H,DING Z.Path planning for intelligent robots based on deep Q-learning with experience replay and heuristic knowledge[J].IEEE/CAA Journal of Automatica Sinica,2020,7(4):1179-1189.
[20] QUIGLEY M,CONLEY K,GERKEY B.ROS:an open-source robot operating system[C]//International Conference on Robotics and Automation,2009.
[21] KOENING N,HOWARD A.Design and use paradigms for Gazebo,an open-source multi-robot simulator[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems,2004.