YANG Lingyao, ZHANG Aihua, ZHANG Jie, SONG Jiqiang. Real-Time Path Planning of Velocity Potential for Robot in Grid Map Environment[J]. Computer Engineering and Applications, 2021, 57(24): 290-295.
[1] MATOUI F,BOUSSAID B,ABDELKRIM M N.Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach[J].Simulation,2019,95(7):637-657.
[2] 郭银景,孟庆良,孔芳,等.AUV路径规划算法研究现状与展望[J].计算机科学与探索,2020,14(12):1981-1994.
GUO Y J,MENG Q L,KONG F,et al.Research status and prospect of AUV path planning algorithms[J].Journal of Frontiers of Computer Science and Technology,2020,14(12):1981-1994.
[3] 方玉发.基于麦克纳姆轮的重载AGV关键技术研究与应用[D].杭州:浙江大学,2019.
FANG Y F.Research and application of key technologies of heavy load AGV with mecanum wheel[D].Hangzhou:Zhejiang University,2019.
[4] 余文凯,章政,付雪画,等.基于地图预处理及改进A~*算法的路径规划[J].高技术通讯,2020,30(4):383-390.
YU W K,ZHANG Z,FU X H,et al.Path planning based on map preprocessing and improved A~* algorithm[J].High Technology Letters,2020,30(4):383-390.
[5] WANG P,GAO S,LI L,et al.Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm[J].Energies,2019,12(12):220-225.
[6] DAI X L,LONG S,ZHANG Z W,et al.Mobile robot path planning based on ant colony algorithm with A* heuristic method[J].Frontiers in Neurorobotics,2019,13:15.
[7] BACK S,CHO G,OH J,et al.Autonomous UAV trail navigation with obstacle avoidance using deep neural networks[J].Journal of Intelligent and Robotic Systems,2020,100(2):1-17.
[8] 张献,任耀峰,王润芃.基于自适应遗传算法的连续时空最优搜索路径规划研究[J].兵工学报,2015,36(12):2386-2395.
ZHANG X,REN Y F,WANG R P.Research on continuous space time optimal search path planning based on adaptive genetical algorithm[J].Acta Armamentarri,2015,36(12):2386-2395.
[9] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[J].International Journal of Robotics Research,1986,5(1):90-98.
[10] 程志,张志安,李金芝,等.改进人工势场法的移动机器人路径规划[J].计算机工程与应用,2019,55(23):29-34.
CHEN Z,ZHANG Z A,LI J Z,et al.Mobile robots path planning based on improved artificial potential field[J].Computer Engineering and Applications,2019,55(23):29-34.
[11] 马小陆,梅宏.基于改进势场蚁群算法的移动机器人全局路径规划[J].机械工程学报,2021,57(1):19-27.
MA X L,MEI H.Mobile robot global path planning based on improved ant colony system algorithm with potential field[J].Journal of Mechanical Engineering,2021,57(1):19-27.
[12] 张祺,杨宜民.基于改进人工势场法的足球机器人避碰控制[J].机器人,2002(1):12-15.
ZAHNG Q,YANG Y M.Soccer robot collision avoidance control based on evolutionary artificial potential field[J].Robot,2002(1):12-15.
[13] 王肖青,王奇志.传统人工势场的改进[J].计算机技术与发展,2006(4):96-98.
WANG X Q,WANG Q Z.Improvement of traditional artificial potential field[J].Computer Technology and Development,2006(4):96-98.
[14] 马杰,苏钰栋,熊勇,等.基于速度障碍和人工势场的受限水域船舶避碰决策方法[J].中国安全科学学报,2020,30(11):60-66.
MA J,SU Y D,XIONG Y,et al.Decision-making method for collision avoidance of ships in confined waters based on velocity obstacle and artificial potential field[J].China Safety Science Journal,2020,30(11):60-66.
[15] LAZAROWSKA A.Discrete artificial potential field approach to mobile robot path planning[J].IFAC-PapersOnLine,2019,52(8):277-282.
[16] AZZABI A,NOURI K.An advanced potential field method proposed for mobile robot path[J].Transactions of the Institute of Measurement and Control,2019,41(11):3132-3144.
[17] ZHANG N,ZHANG Y,MA C,et al.Path planning of six-DOF serial robots based on improved artificial potential field method[C]//2017 IEEE International Conference on Robotics and Biomimetics(ROBIO).Macau,China:IEEE,2017:617-621.