
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (9): 80-101.DOI: 10.3778/j.issn.1002-8331.2410-0315
• Research Hotspots and Reviews • Previous Articles Next Articles
CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng
Online:2025-05-01
Published:2025-04-30
陈浞,刘东青,唐平华,黄燕,张文霞,贾岩,程海峰
CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection[J]. Computer Engineering and Applications, 2025, 61(9): 80-101.
陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2410-0315
| [1] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. [2] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers[J]. arXiv:2005.12872, 2020. [3] SIAM M, GAMAL M, ABDEL-RAZEK M, et al. A comparative study of real-time semantic segmentation for autonomous driving[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 2018. [4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. arXiv:1506.01497, 2015. [5] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[J]. arXiv:1703.06870, 2017. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[J]. arXiv:1506.02640, 2015. [7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017: 6517-6525. [8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [9] ADARSH P, RATHI P, KUMAR M. YOLO v3-Tiny: object detection and recognition using one stage improved model[C]//Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020: 687-694. [10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 7464-7475. [11] JIANG Z, ZHAO L, LI S, et al. Real-time object detection method based on improved YOLOv4-tiny[J]. arXiv:2011.04244, 2020. [12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015. [13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. arXiv:1708.02002, 2017. [14] DUAN K, BAI S, XIE L, et al. CenterNet++ for object detection[J]. arXiv:2204.08394,2022. [15] TIAN Z, SHEN C, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. arXiv:2006.09214, 2020. [16] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: 9992-10002. [17] XU Y, ZHANG Q, ZHANG J, et al. ViTAE: vision transformer advanced by exploring intrinsic inductive bias[J]. arXiv:2106.03348, 2021. [18] BAO H B, DONG L, PIAO S H, et al. BEiT: BERT pre-training of image transformers[J]. arXiv:2106.08254, 2021. [19] BADUE C, GUIDOLINI R, CARNEIRO R V, et al. Self-driving cars: a survey[J]. arXiv:1901.04407, 2019. [20] ARANI E, GOWDA S, MUKHERJEE R, et al. A comprehensive study of real-time object detection networks across multiple domains: a survey[J]. arXiv:2208.10895, 2022. [21] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[J]. arXiv:1312.6199, 2013. [22] KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in the physical world[J]. arXiv:1607.02533, 2016. [23] LU J, SIBAI H, FABRY E. Adversarial examples that fool detectors[J]. arXiv:1712.02494, 2017. [24] ZHANG Y, FOROOSH H, DAVID P, et al. CAMOU: learning physical vehicle camouflages to adversarially attack detectors in the wild[C]//Proceedings of the International Conference on Learning Representations, 2018. [25] WANG Z, ZHENG S, SONG M, et al. advPattern: physical-world attacks on deep person re-identification via adversarially Transformable patterns[J]. arXiv:1908.09327, 2019. [26] WEI H, WANG Z, JIA X, et al. HOTCOLD block: fooling thermal infrared detectors with a novel wearable design[J]. arXiv:2212.05709, 2022. [27] HU C, SHI W, JIANG T, et al. Adversarial infrared blocks: a multi-view black-box attack to thermal infrared detectors in physical world[J]. arXiv:2304.10712, 2023. [28] WANG D, LI C, WEN S, et al. Daedalus: breaking non-maximum suppression in object detection via adversarial examples[J]. arXiv:1902.02067, 2019. [29] ATHALYE A, ENGSTROM L, ILYAS A, et al. Synthesizing robust adversarial examples[J]. arXiv:1707.07397, 2017. [30] YANG D Y, XIONG J, LI X, et al. Building towards “invisible cloak”: robust physical adversarial attack on YOLO object detector[C]//Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, NY, USA, 2018: 368-374. [31] TILIWALIDI K. Adversarial infrared geometry: using geometry to perform adversarial attack against infrared pedestrian detectors[J]. arXiv:2403.03674, 2024. [32] ZHU X, HU Z, HUANG S, et al. Infrared invisible clothing: hiding from infrared detectors at multiple angles in real world[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 13307-13316. [33] DUAN Y, CHEN J, ZHOU X, et al. Learning coated adversarial camouflages for object detectors[J]. arXiv:2109.00124, 2021. [34] SURYANTO N, KIM Y, KANG H, et al. DTA: physical camouflage attacks using differentiable transformation network[J]. arXiv:2203.09831, 2022. [35] SURYANTO N, KIM Y, LARASATI H T, et al. ACTIVE: towards highly transferable 3D physical camouflage for universal and robust vehicle evasion[J]. arXiv:2308.07009, 2023. [36] HU Z, CHU W, ZHU X, et al. Physically realizable natural-looking clothing textures evade person detectors via 3D modeling[J]. arXiv:2307.01778, 2023. [37] ZOLFI A, KRAVCHIK M, ELOVICI Y, et al. The translucent patch: a physical and universal attack on object detectors[J]. arXiv:2012.12528, 2020. [38] ZHANG Y C, ZHANG Y, QI J, et al. Adversarial patch attack on multi-scale object detection for UAV remote sensing images[J]. Remote Sensing, 2022, 14(21): 5298. [39] LIAN J, MEI S, ZHANG S, et al. Benchmarking adversarial patch against aerial detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. [40] XU K, ZHANG G, LIU S, et al. Adversarial T-shirt! evading person detectors in a physical world[J]. arXiv:1910.11099, 2019. [41] GUESMI A, DING R, HANIF M A, et al. DAP: a dynamic adversarial patch for evading person detectors[J]. arXiv:2305.11618, 2023. [42] JAN S T K, MESSOU J, LIN Y C, et al. Connecting the digital and physical world: improving the robustness of adversarial attacks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 962-969. [43] MAHENDRAN A, VEDALDI A. Understanding deep image representations by inverting them[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 5188-5196. [44] JIA W, LU Z, ZHANG H, et al. Fooling the eyes of autonomous vehicles: robust physical adversarial examples against traffic sign recognition systems[J]. arXiv:2201.06192, 2022. [45] HU Y C T, CHEN J C, KUNG B H, et al. Naturalistic physical adversarial patch for object detectors[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: 7828-7837. [46] HOORY S, SHAPIRA T, SHABTAI A, et al. Dynamic adversarial patch for evading object detection models[J]. arXiv:2010.13070, 2020. [47] LI Y, ZHANG B, ZHAO G, et al. InvisibiliTee: angle-agnostic cloaking from person-tracking systems with a tee[J]. arXiv:2208.06962, 2022. [48] WU T, NING X, LI W, et al. Physical adversarial attack on vehicle detector in the carla simulator[J]. arXiv:2007.16118, 2020. [49] LOVISOTTO G, TURNER H, SLUGANOVIC I, et al. SLAP: improving physical adversarial examples with short-lived adversarial perturbations[J]. arXiv:2007.04137, 2020. [50] EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning models[J]. arXiv:1707.08945, 2017. [51] EYKHOLT K, EVTIMOV I, FERNANDES E, et al. Physical adversarial examples for object detectors[J]. arXiv:1807.07769, 2018. [52] CHEN S T, CORNELIUS C, MARTIN J, et al. ShapeShifter: robust physical adversarial attack on Faster R-CNN object detector[J]. arXiv:1804.05810, 2018. [53] ZHAO Y, ZHU H, LIANG R, et al. Seeing isn’t believing: towards more robust adversarial attack against real world object detectors[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019: 1989-2004. [54] XUE M, YUAN C, HE C, et al. NaturalAE: natural and robust physical adversarial examples for object detectors[J]. Journal of Information Security and Applications, 2021, 57: 102694. [55] WEI X, GUO Y, YU J. Adversarial sticker: a stealthy attack method in the physical world[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023,45(3): 2711-2725. [56] ZHU W, JI X, CHENG Y, et al. TPatch: a triggered physical adversarial patch[C]//Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), 2023: 661-678. [57] WANG N, LUO Y, SATO T, et al. Does physical adversarial example really matter to autonomous driving? towards system-level effect of adversarial object evasion attack[J]. arXiv:2308.11894, 2023. [58] LIN T, YU L, JIN G, et al. Out-of-bounding-box triggers: a stealthy approach to cheat object detectors[J]. arXiv:2410. 10091, 2024. [59] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision(ECCV 2014), 2014: 740-755. [60] ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 2110-2118. [61] THYS S, VAN RANST W, GOEDEMé T. Fooling automated surveillance cameras: adversarial patches to attack person detection[J]. arXiv:1904.08653, 2019. [62] HUANG H, CHEN Z, CHEN H, et al. T-SEA: transfer-based self-ensemble attack on object detection[J]. arXiv:2211.09773, 2022. [63] BAYER J, BECKER S, MüNCH D, et al. Eigenpatche-adversarial patches from principal components[J]. arXiv:2306.10963, 2023. [64] TAN W, LI Y, ZHAO C, et al. DOEPatch: dynamically optimized ensemble model for adversarial patches generation[J]. arXiv:2312.16907, 2023. [65] ZHANG H, MA X. Misleading attention and classification: an adversarial attack to fool object detection models in the real world[J]. Computers & Security, 2022, 122: 102876. [66] GUESMI A, BILASCO I M, SHAFIQUE M, et al. AdvART: adversarial art for camouflaged object detection attacks[J]. arXiv:2303.01734, 2023. [67] ZHOU Z, ZHAO H, LIU J, et al. MVPatch: more vivid patch for adversarial camouflaged attacks on object detectors in the physical world[J]. arXiv:2312.17431, 2023. [68] LAPID R, MIZRAHI E, SIPPER M. Patch of invisibility: naturalistic physical black-box adversarial attacks on object detectors[J]. arXiv:2303.04238, 2023. [69] QIN Y, ZHANG K, PAN H. Adversarial attack for object detectors under complex conditions[J]. Computers & Security, 2023, 134: 103460. [70] CHEN X, LIU F, JIANG D, et al. Natural adversarial patch generation method based on latent diffusion model[J]. arXiv:2312.16401, 2023. [71] LEE M, KOLTER Z. On physical adversarial patches for object detection[J]. arXiv:1906.11897, 2019. [72] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 2005: 886-893. [73] CHENG J, ZHANG Y, WANG Z, et al. DePatch: towards robust adversarial patch for evading person detectors in the real world[J]. arXiv:2408.06625, 2024. [74] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [75] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [76] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 3686-3693. [77] DU A, CHEN B, CHIN T J, et al. Physical adversarial attacks on an aerial imagery object detector[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2022: 3798-3808. [78] CUI J, GUO W, HUANG H, et al. Adversarial examples for vehicle detection with projection transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-18. [79] SUN C, SUN J, ZHANG X, et al. Physical strip attack for object detection in optical remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-11. [80] KONG D, LIANG S, REN W. Environmental matching attack against unmanned aerial vehicles object detection[J]. arXiv:2405.07595, 2024. [81] MUNDHENK T N, KONJEVOD G, SAKLA W A, et al. A large contextual dataset for classification, detection and counting of cars with deep learning[C]//Proceedings of the European Conference on Computer Vision(ECCV 2016), 2016: 785-800. [82] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. arXiv:2001.06303, 2020. [83] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV), Montreal, QC, Canada, 2021: 3500-3509. [84] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 3974-3983. [85] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. [86] HOUBEN S, STALLKAMP J, SALMEN J, et al. Detection of traffic signs in real-world images: the German traffic sign detection benchmark[C]//Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 2013: 1-8. [87] HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017: 4165-4173. [88] DEN HOLLANDER R, ADHIKARI A, TOLIOS I, et al. Adversarial patch camouflage against aerial detection[C]//Proceedings of the Conference on Artificial Intelligence and Machine Learning in Defense Applications, United Kingdom, 2020: 11. [89] WISE C, PLESTED J. Developing imperceptible adversarial patches to camouflage military assets from computer vision enabled technologies[J]. arXiv:2202.08892, 2022. [90] LIAN J, WANG X, SU Y, et al. CBA: contextual background attack against optical aerial detection in the physical world[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-16. [91] TANG G, YAO W, JIANG T, et al. Adversarial patch-based false positive creation attacks against aerial imagery object detectors[J]. Neurocomputing, 2024, 579: 127431. [92] WANG X, MEI S, LIAN J, et al. Fooling aerial detectors by background attack via dual-adversarial-induced error identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618416. [93] CHEN J, ZHANG Y, LIU C, et al. Digital-to-physical visual consistency optimization for adversarial patch generation in remote sensing scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5623017. [94] LONG Y, GONG Y, XIAO Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. [95] TARCHOUN B, ALAM Q M, ABU-GHAZALEH N, et al. Fool the hydra: adversarial attacks against multi-view object detection systems[J]. arXiv:2312.00173, 2023. [96] HUANG L, GAO C, ZHOU Y, et al. Universal physical camouflage attacks on object detectors[J]. arXiv:1909.04326, 2019. [97] WU Z, LIM S N, DAVIS L, et al. Making an invisibility cloak: real world adversarial attacks on object detectors[J]. arXiv:1910.14667, 2019. [98] HU Z, HUANG S, ZHU X, et al. Adversarial texture for fooling person detectors in the physical world[J]. arXiv:2203.03373, 2022. [99] GE Y, ZHANG R, WANG X, et al. DeepFashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 5332-5340. [100] WU T, NING X, LI W, et al. Physical adversarial attack on vehicle detector in the carla simulator[J]. arXiv:2007. 16118, 2020. [101] OH S Y, YANG H. Simulation of physical adversarial attacks on vehicle detection models[C]//Proceedings of the 2023 23rd International Conference on Control, Automation and Systems (ICCAS), Yeosu, Korea, 2023: 1395-1400. [102] WANG J, LIU A, YIN Z, et al. Dual attention suppression attack: generate adversarial camouflage in physical world[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 8561-8570. [103] WANG D, JIANG T, SUN J, et al. FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 2414-2422. [104] ZHANG Y, GONG Z, ZHANG Y, et al. Boosting transferability of physical attack against detectors by redistributing separable attention[J]. Pattern Recognition, 2023, 138: 109435. [105] ZHOU J, LYU L, HE D, et al. RAUCA: a novel physical adversarial attack on vehicle detectors via robust and accurate camouflage generation[J]. arXiv:2402.15853, 2024. [106] LI Y, TAN W, ZHAO C, et al. Flexible physical camouflage generation based on a differential approach[J]. arXiv:2402.13575, 2024. [107] LYU L, ZHOU J, HE D, et al. CNCA: toward customizable and natural generation of adversarial camouflage for vehicle detectors[J]. arXiv:2409.17963, 2024. [108] YUAN S, LI H, HAN X, et al. ITPatch: an invisible and triggered physical adversarial patch against traffic sign recognition[J]. arXiv:2409.12394, 2024. [109] WEN H, CHANG S, ZHOU L. Light projection-based physical-world vanishing attack against car detection[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), Rhodes Island, Greece, 2023: 1-5. [110] SHAPIRA A, BITTON R, AVRAHAM D, et al. Attacking object detector using a universal targeted label-switch patch[J]. arXiv:2211.08859, 2022. [111] CHAHE A, WANG C, JEYAPRATAP A, et al. Dynamic adversarial attacks on autonomous driving systems[J]. arXiv:2312.06701, 2023. [112] WEI X, HUANG Y, SUN Y, et al. Unified adversarial patch for visible-infrared cross-modal attacks in the physical world[J]. arXiv:2307.14682, 2023. [113] HU C, SHI W. Adversarial infrared curves: an attack on infrared pedestrian detectors in the physical world[J]. arXiv:2312.14217, 2023. [114] TILIWALIDI K, HU C, SHI W. Multi-view black-box physical attacks on infrared pedestrian detectors using adversarial infrared grid[J]. arXiv:2407.01168, 2024. [115] HU C, SHI W. Two-stage optimized unified adversarial patch for attacking visible-infrared cross-modal detectors in the physical world[J]. arXiv:2312.01789, 2023. [116] HU Z, YANG X, ZHAO J, et al. Physically structured adversarial patch inspired by natural leaves multiply angles deceives infrared detectors[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(6): 102122. [117] JIA X, ZHU C, LI M, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021: 3489-3497. [118] WEI X X , YU J, HUANG Y. Physically adversarial infrared patches with learnable shapes and locations[J]. arXiv:2303.13868, 2021. [119] ZHU X, LI X, LI J, et al. Fooling thermal infrared pedestrian detectors in real world using small bulbs[J]. arXiv:2101.08154, 2021. [120] ZHU X, LIU Y, HU Z, et al. Infrared adversarial car stickers[J]. arXiv:2405.09924, 2024. |
| [1] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [2] | SONG Cunli, YANG Jiajun, ZHANG Xuesong. Twin Network Algorithm for Small Target Detection in Foggy Remote Sensing [J]. Computer Engineering and Applications, 2025, 61(9): 128-138. |
| [3] | YANG Hongdan, FU Gui, SHAO Huichao, WANG Yixin, SHAO Yanhua, CHU Hongyu, DENG Hu. Small Object Detection in Aerial Imagery Using Multi-Scale Hiearchical Feature Fusion Based Approach [J]. Computer Engineering and Applications, 2025, 61(9): 230-241. |
| [4] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [5] | ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery [J]. Computer Engineering and Applications, 2025, 61(8): 35-48. |
| [6] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [7] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [8] | MENG Weichao, BIAN Chunjiang, NIE Hongbin. Method for Detecting Dim Small Infrared Targets with Low Signal-to-Noise Ratio in Complex Background [J]. Computer Engineering and Applications, 2025, 61(8): 183-193. |
| [9] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [10] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [11] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [12] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [13] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [14] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [15] | LIU Kui, TANG Huiping, SU Benyue. Gated Convolution and High-Frequency Feature Fusion for Infrared Small Target Detection [J]. Computer Engineering and Applications, 2025, 61(7): 306-314. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||