Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (9): 128-138.DOI: 10.3778/j.issn.1002-8331.2407-0539

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Twin Network Algorithm for Small Target Detection in Foggy Remote Sensing

SONG Cunli, YANG Jiajun, ZHANG Xuesong   

  1. School of Rail Intelligent Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, China
  • Online:2025-05-01 Published:2025-04-30

雾天遥感小目标检测的双子网算法

宋存利,杨佳俊,张雪松   

  1. 大连交通大学 轨道智能工程学院,辽宁 大连 116028

Abstract: Aiming at the leakage and misdetection problem of remote sensing small target detection in foggy scenarios, a GFFA-YOLO algorithm based on bipartite network multi-task co-training is proposed. Firstly, the gated fused GFFA network is used to de-fog to recover the target information. Secondly, SD-SCConv and RepNCSPELAN-SD-SCConv modules are designed, which improve the feature extraction capability by fusing the space to the depth layer while using the self-correction mechanism. Finally the selective attention LSK module is added to enhance multi-scale feature fusion. The experimental results show that the proposed algorithm achieves a mAP of 85.6% and 74.3% on the NWPU VHR-10 dataset with different fog concentrations, and 82.1% on the fog-treated DOTA v1.0 dataset, which exhibits a higher detection capability compared to mainstream algorithms.

Key words: YOLO, small target detection, defogging algorithm;attention mechanism

摘要: 针对雾天场景下遥感小目标检测的漏检错检问题,提出了基于双子网多任务协同训练的GFFA-YOLO算法。利用门控融合的GFFA网络去雾来恢复目标信息。设计SD-SCConv和RepNCSPELAN-SD-SCConv模块,该模块通过融合空间到深度层,同时利用自校正机制来提高特征提取能力。增加了选择注意力LSK模块来增强多尺度特征融合。实验结果表明,所提算法在不同雾浓度的NWPU VHR-10数据集上的mAP分别达到85.6%和74.3%,在雾处理后的DOTA v1.0数据集上mAP达到82.1%,相较主流算法表现出更高的检测能力。

关键词: YOLO, 小目标检测, 去雾算法, 注意力机制